Answer:
pHe = 3.2 × 10⁻³ atm
pNe = 2.5 × 10⁻³ atm
P = 5.7 × 10⁻³ atm
Explanation:
Given data
Volume = 1.00 L
Temperature = 25°C + 273 = 298 K
mHe = 0.52 mg = 0.52 × 10⁻³ g
mNe = 2.05 mg = 2.05 × 10⁻³ g
The molar mass of He is 4.00 g/mol. The moles of He are:
0.52 × 10⁻³ g × (1 mol / 4.00 g) = 1.3 × 10⁻⁴ mol
We can find the partial pressure of He using the ideal gas equation.
P × V = n × R × T
P × 1.00 L = 1.3 × 10⁻⁴ mol × (0.082 atm.L/mol.K) × 298 K
P = 3.2 × 10⁻³ atm
The molar mass of Ne is 20.18 g/mol. The moles of Ne are:
2.05 × 10⁻³ g × (1 mol / 20.18 g) = 1.02 × 10⁻⁴ mol
We can find the partial pressure of Ne using the ideal gas equation.
P × V = n × R × T
P × 1.00 L = 1.02 × 10⁻⁴ mol × (0.082 atm.L/mol.K) × 298 K
P = 2.5 × 10⁻³ atm
The total pressure is the sum of the partial pressures.
P = 3.2 × 10⁻³ atm + 2.5 × 10⁻³ atm = 5.7 × 10⁻³ atm
Covalent bond is the term that is being used to describe the bonds in the compounds that are created due to the sharing of one or more electrons. One of the best example of the simplest covalent bond is the bond that is being created when two isolated hydrogen atoms come together to form an H2 molecule. An isolated hydrogen atom has one proton and electron being combined by the force of attraction from the opposite-charged articles. When a pair of isolated hydrogen atom combines, two forces of attraction are created coming from each of the isolated hydrogen atom.
Answer:
The final balanced equation is
Ni2+ + 2NaOH --> Ni (OH)2 + 2Na+
Explanation:
It is given that sodium hydroxide is added to collect the solid nickel(II) hydroxide product
The empirical equation for this statement is
Ni2+ + NaOH --> Ni (OH)2 + Na+
We will first balance the hydroxide molecule. On the right side there are two OH molecules.
Thus, on the left side we will take 2 sodium hydroxide
Ni2+ + 2NaOH --> Ni (OH)2 + Na+
Now we will balance the sodium ion which are 2 in numbers on the left side and 1 on the right side
Ni2+ + 2NaOH --> Ni (OH)2 + 2Na+
So, the final balanced equation is
Ni2+ + 2NaOH --> Ni (OH)2 + 2Na+
The amount of substance present in a certain object with a given half-life in terms of h can be expressed through the equation,
A(t) = (A(o))(0.5)^(t/h)
where A(t) is the amount of substance after t years and A(o) is the original amount. In this item we are given that A(t)/A(o) is equal to 0.89. Substituting the known values,
0.89 = (0.5)(t / 5730 years)
The value of t from the equation is 963.34 years.
<em>Answer: 963 years</em>
Answer:
The maximum pressure is 612.2 Pa
Explanation:
The pressure of the ice (P1) = 624 Pa
The temperature of the ice = 273.16 K
The maximum temperature the specimen = - 5 oC
= -5 + 273 = 268K
The maximum Pressure the freeze drying can be will be (P2) = ?
Using Pressure law, which shows the relationship between pressure and temperature.
P1 / T1 = P2 / T2
P2 T1 = P1 T2
P2 = P1 T2 / T1
P2 = 624 × 268 / 273.16
P2 = 612.2 Pa
The maximum pressure at which drying can be carried out is 612.2 Pa
Check the attached document more explanation. jjjjggggg