Answer:
a) 2,650%
b) 27,400%
c) 164,900%
Step-by-step explanation:
We want to measure the percentage we would have to increase the typical value to obtain the values given in a), b) and c).
But 0.2 increased in x% equals
0.2 + 0.2(x/100) =0.2(1+x/100)
So, if we want to increase 0.2 in x%, we must multiply it by (1+x/100)
a)
We need to find the value of x such that
0.2(1+x/100) = 5.5 ⇒ (1+x/100)=5.5/0.2 ⇒ 1+x/100=27.5
⇒ x/100=26.5 ⇒ x=2,650%
b)
0.2(1+x/100) = 55 ⇒ (1+x/100)=55/0.2 ⇒ 1+x/100=275
⇒ x/100=274 ⇒ x=27,400%
c)
5.5 min = 5.5*60 s = 330
0.2(1+x/100) = 330 ⇒ (1+x/100)=330/0.2 ⇒ 1+x/100=1,650
⇒ x/100=1,649 ⇒ x=164,900%
Answer:
F
There is about half a chance so 4 would be the closest to half. Hope this helps.
The <em>exponential</em> function y = 290 · 0.31ˣ reports a decay as its <em>growth</em> rate is less than 1 and greater than 0. Its <em>percentage</em> rate of decrease is equal to 69 %.
<h3>How to determine the behavior of an exponential function</h3>
<em>Exponential</em> functions are <em>trascendental</em> functions, these are, functions that cannot be described <em>algebraically</em>. The <em>simplest</em> form of <em>exponential</em> functions is shown below:
y = a · bˣ (1)
Where:
- a - Initial value
- b - Growth rate
- x - Independent variable.
- y - Dependent variable.
Please notice that this kind of <em>exponential</em> function reports a <em>growth</em> for b > 1 and <em>decay</em> for b < 1 and b > 0. According to the statement we have the function y = 290 · 0.31ˣ, then we conclude that the exponential function given reports a <em>decay</em>.
The <em>percentage</em> rate of decrease is determined by the following formula:
100 × (1-0.31) = 100 × 0.69 = 69 %
The <em>percentage</em> rate of decrease related to the <em>exponential</em> function is 69 %.
To learn more on exponential functions: brainly.com/question/11487261
#SPJ1