Ionic bond
Na+ has a POSITIVE charge
while Cl- has a NEGATIVE one.
Through ionic bond both form NACL (Salt).
Answer:
Solids
Explanation:
At standard room temperature and pressure, most of the elements are solids.
Just a few of the elements are liquids and gases at this temperature.
The periodic table is made up of metals, metalloids and non-metals. Most of these substances are actually solid.
Some non-metals are gaseous at standard room temperature.
Answer : The enthalpy of the given reaction will be, -1048.6 kJ
Explanation :
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
The main reaction is:

The intermediate balanced chemical reactions are:
(1)

(2)

(3)

(4)

(5)

Now reversing reaction 2, multiplying reaction 3 by 4, reversing reaction 1 and multiplying by 2, reversing reaction 5 and multiplying by 2 and then adding all the equations, we get :
(1)

(2)

(3)

(4)

(5)

The expression for enthalpy of main reaction will be:



Therefore, the enthalpy of the given reaction will be, -1048.6 kJ
Answer:
12.18 u
Explanation:
The average atomic mass of an element is calculated by taking the weighted average of the atomic masses of its stable isotopes.
You can acquire the atomic mass of any chemical element by using the periodic table. I've provided an example on a document below to help you identify the components of an <em>element </em>block from the periodic table. Now if you want to find the mass of an exact amount of a substance you use moles for that. That's why it's called molar mass. To find the molar mass of a substance follow this little guide:
- Start with the number of grams of each element given.
- Convert the mass of each element to moles utilizing the molar mass from the periodic table.
- Divide each mole value by the smallest number of moles deciphered.
- Round your answer. This is the mole ratio of the element.
*Use the third document I've inserted below to follow the guide.
<u>*</u><u>All documents used here are property of their respective owners</u><u>*</u>