Answer:
The force exerted is 318.86 N
Explanation:
The force exerted by such a stream is calculated by multiplying the mass flow rate of water by the velocity of the stream of water.
mass flow rate = 21.4 kg/s
velocity = 14.9 m/s
Force exerted = 21.4 kg/s × 14.9 m/s = 318.86 kgm/s^2 = 318.86 N
Something that there is only so many of or not enough of
Answer:
from
force =mass x acceleration
mass = force/acceleration
m = f/a
m = 7.5/15
m=0.5kg
Answer:
0.09 x10^-10m
Explanation:
Using wavelength=( 12.27 A)/√V
= 12.27 x 10^-10/ √1.6x10^2
= 0.09x10^-10m
Answer:
<em>The net force acting on the object is 0 N</em>
Explanation:
<u>Newton's Second Law of Forces</u>
The net force acting on a body is proportional to the mass of the object and its acceleration.
The net force can be calculated as the sum of all the force vectors in each rectangular coordinate separately.
The image shows a free body diagram where four forces are acting: two in the vertical direction and two in the horizontal direction.
Note the forces in the vertical direction have the same magnitude and opposite directions, thus the net force is zero in that direction.
Since we are given the acceleration a =0, the net force is also 0, thus the horizontal forces should be in equilibrium.
The applied force of Fapp=10 N is compensated by the friction force whose value is, necessarily Fr=10 N in the opposite direction.
The net force acting on the object is 0 N