Answer:
1461.7 g of AgI
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
CaI₂ + 2AgNO₃ —> 2AgI + Ca(NO₃)₂
From the balanced equation above,
1 mole of CaI₂ reacted to produce 2 moles of AgI.
Next, we shall determine the number of mole AgI produced by the reaction of 3.11 moles of CaI₂. This can be obtained as follow:
From the balanced equation above,
1 mole of CaI₂ reacted to produce 2 moles of AgI.
Therefore, 3.11 moles of CaI₂ will react to produce = 3.11 × 2 = 6.22 moles of AgI
Finally, we shall determine the mass of 6.22 moles of AgI. This can be obtained as follow:
Mole of AgI = 6.22 moles
Molar mass of AgI = 108 + 127
= 235 g/mol
Mass of AgI =?
Mass = mole × molar mass
Mass of AgI = 6.22 × 235
Mass of AgI = 1461.7 g
Therefore, 1461.7 g of AgI were obtained from the reaction.
The answer is the second choice
Answer: The reactants are baking soda and vinegar. Baking soda is a white powder, and vinegar is a clear liquid. The products of this reaction are carbon dioxide, water, and sodium acetate. Carbon dioxide is a colorless gas, water is a colorless liquid, and sodium acetate is a white crystalline powder.
A chemical change can be seen in how the molecular formulas of the products are different from the reactants, since the reactants have chemically changed into completely different molecules.
Hope this helps
Answer: chemical property
Explanation: This is a chemical property because it was combined with carbon, another molecule acting like an element. The answer to the question is chemical property. Hope this helps!
An atom has a nucleus and is made up of protons neutrons and electrons