Answer: 5.85kJ/Kmol.
Explanation:
The balanced equilibrium reaction is

The expression for equilibrium reaction will be,
![K_p=\frac{[p_{D}]\times [p_{C}]}^4{[p_{B}]^2\times [p_{A}]}](https://tex.z-dn.net/?f=K_p%3D%5Cfrac%7B%5Bp_%7BD%7D%5D%5Ctimes%20%5Bp_%7BC%7D%5D%7D%5E4%7B%5Bp_%7BB%7D%5D%5E2%5Ctimes%20%5Bp_%7BA%7D%5D%7D)
Now put all the given values in this expression, we get the concentration of methane.


Relation of standard change in Gibbs free energy and equilibrium constant is given by:

where,
R = universal gas constant = 8.314 J/K/mole
T = temperature = 
= equilibrium constant = 10.6



Thus standard change in Gibbs free energy of this reaction is 5.85kJ/Kmol.
Signs that a chemical reaction is occurring are: 1. change in color 2. change in odor 3. change in pH, as in changes from acid to base or base to acid
Answer:
The rate decreases
Explanation:
When we dissolve a gas in a water, the process is exothermic. This implies that heat is evolved upon dissolution of a gas in water.
Recall from Le Chateliers principle that for exothermic reactions, an increase in temperature favours the reverse reaction. The implication of these is that when the temperature of the gas is increased, less gas will dissolve in water.
Hence increase in temperature decreases the rate of solubility of a gas in water.
Answer:
The speed of an electron is 0.01908 m/s.
Explanation:
De-Broglie wavelength is given by:

where,
= wavelength of a particle
h = Planck's constant = 
m = mass of particle
v = velocity of the particle
Velocity of an electron = v
Mass of an electron = 
Wavelength of electron is twice the displacement in seconds which is velocity of an electron.
Then.wavelength of an electron = 

v = 0.01908 m/s
The speed of an electron is 0.01908 m/s.