Answer:
see below
Step-by-step explanation:
All of the given data sets have x-values that are sequential with a difference of 1. That makes it easy to determine the sort of sequence the y-values make.
<u>first choice</u>: the y-values have a common difference of -2. This will be matched by a linear model.
<u>second choice</u>: the y-values have a common difference of +2. Again, this will be matched by a linear model.
<u>third choice</u>: the y-values have a common ratio of -2. This will be matched by an exponential model.
<u>fourth choice</u>: the y-value differences are 3, 5, 7, increasing by a constant amount (2). This is characteristic of a sequence that has a quadratic model.
Answer:

Step-by-step explanation:

Answer:
$14.40
Step-by-step explanation:
$18-20%=$14.40
First, lets note that

. This leads us with the following problem:

Lets add sin on both sides, and we get:

Now if we divide with sin on both sides we get:

Now we can remember how cot is defined, it is (cos/sin). So we have:

Now take the inverse of cot and we get:

In general we have

, the reason we have to add pi times n, is because it is a function that has multiple answers, see the picture: