A is the answer of course
The momentum does not change because he is going the same speed just a different way.
Answer:
<em>D. The total force on the particle with charge q is perpendicular to the bottom of the triangle.</em>
Explanation:
The image is shown below.
The force on the particle with charge q due to each charge Q = 
we designate this force as N
Since the charges form an equilateral triangle, then, the forces due to each particle with charge Q on the particle with charge q act at an angle of 60° below the horizontal x-axis.
Resolving the forces on the particle, we have
for the x-component
= N cosine 60° + (-N cosine 60°) = 0
for the y-component
= -f sine 60° + (-f sine 60) = -2N sine 60° = -2N(0.866) = -1.732N
The above indicates that there is no resultant force in the x-axis, since it is equal to zero (
= 0).
The total force is seen to act only in the y-axis, since it only has a y-component equivalent to 1.732 times the force due to each of the Q particles on q.
<em>The total force on the particle with charge q is therefore perpendicular to the bottom of the triangle.</em>
Answer:
(a): 
(b): 
Explanation:
<u>Given:</u>
- Charge on one sphere,

- Charge on second sphere,

- Separation between the spheres,

Part (a):
According to Coulomb's law, the magnitude of the electrostatic force of interaction between two static point charges is given by

where,
k is called the Coulomb's constant, whose value is 
From Newton's third law of motion, both the spheres experience same force.
Therefore, the magnitude of the force that each sphere experiences is given by

The negative sign shows that the force is attractive in nature.
Part (b):
The spheres are identical in size. When the spheres are brought in contact with each other then the charge on both the spheres redistributes in such a way that the net charge on both the spheres distributed equally on both.
Total charge on both the spheres, 
The new charges on both the spheres are equal and given by

The magnitude of the force that each sphere now experiences is given by
Answer:
Explanation:
The original has hybrid 15N/14N DNA, and the second generation has both hybrid 15N/14N DNA and 14N/14N DNA. No 15N/15N DNA was observed. In this experiment:
Nitrogen is a significant component of DNA. 14N is the most bounteous isotope of nitrogen, however, DNA with the heavier yet non-radioactive and 15N isotope is likewise practical.
E. coli was developed for several generations in a medium containing NH4Cl with 15N. When DNA is extracted from these cells and centrifuged on a salt density gradient, the DNA separates at which its density equals to the salt arrangement. The DNA of the cells developed in 15N medium had a higher density than cells developed in typical 14N medium. After that, E. coli cells with just 15N in their DNA were transferred to a 14N medium.
DNA was removed and compared to pure 14N DNA and 15N DNA. Immediately after only one replication, the DNA was found to have an intermediate density. Since conservative replication would result in equal measures of DNA of the higher and lower densities yet no DNA of an intermediate density, conservative replication was eliminated. Moreso, this result was consistent with both semi-conservative and dispersive replication. Semi conservative replication would result in double-stranded DNA with one strand of 15N DNA, and one of 14N DNA, while dispersive replication would result in double-stranded DNA with the two strands having mixtures of 15N and 14N DNA, either of which would have appeared as DNA of an intermediate density.
The DNA from cells after two replications had been completed and found to comprise of equal measures of DNA with two different densities, one corresponding to the intermediate density of DNA of cells developed for just a single division in 14N medium, the other corresponding to DNA from cells developed completely in 14N medium. This was inconsistent with dispersive replication, which would have resulted in a single density, lower than the intermediate density of the one-generation cells, yet at the same time higher than cells become distinctly in 14N DNA medium, as the first 15N DNA would have been part evenly among all DNA strands. The result was steady with the semi-conservative replication hypothesis. The semi conservative hypothesis calculates that each molecule after replication will contain one old and one new strand. The dispersive model suggests that each strand of each new molecule will possess a mixture of old and new DNA.