1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
insens350 [35]
2 years ago
7

A researcher investigating whether joggers are less likely to get colds than people who

Mathematics
1 answer:
STatiana [176]2 years ago
8 0
Your answer is b bro
You might be interested in
Consider the volume of the region shown below, which shows a right circular cone with top radius 3 cm and height 10 cm. We have
koban [17]
I have the same problem here with a slight change in the given values:

radius is 2 & height of 6 indicates the bounding line is y = 3 x---> x = y / 3.... 

<span>thus the [ π radius ² thickness ] yields π (y² / 9 ) <span>dy ,</span> y in [ 0 , 6 ] for the volume... </span>

a Riemann sum is then : y_i = 0 + i [ 6 / n ] = 6 i / n , i = 1,2,3...n and do a right side sum 

<span>π Σ { i = 1,2,3..n } [ 36 i² / 9 n² ] [ 6 / n ]
</span>
I hope my guide has come to your help. God bless and have a nice day ahead!
5 0
3 years ago
Rachel is a lunchroom supervisor at West School. The children eat lunch at 15 long tables. When all tables are used, 240 childre
USPshnik [31]
The answer is c
\frac{240}{15 }  \\  = 16
5 0
3 years ago
Read 2 more answers
Which theorem would you use to prove ABE ~ DCE?
Pachacha [2.7K]
Answer: Choice C) AA similarity

------------------------------------------------------------------------------
------------------------------------------------------------------------------

We are given that angle ABE = angle ECD since they are both right angles (square marker)

Angle AEB = angle CED as they are vertical angles

we have two pairs of congruent angles, leading us to be able to use the AA (angle angle) similarity theorem
3 0
3 years ago
Pls help i will mark brainliest!:) thank you!;D
pashok25 [27]
<h2><em><u>A</u></em><em><u>N</u></em><em><u>S</u></em><em><u>W</u></em><em><u>E</u></em><em><u>R</u></em></h2>

<em><u>H</u></em><em><u>e</u></em><em><u>r</u></em><em><u>e</u></em><em><u> </u></em><em><u>t</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>t</u></em><em><u>w</u></em><em><u>o</u></em><em><u> </u></em><em><u>p</u></em><em><u>o</u></em><em><u>i</u></em><em><u>n</u></em><em><u>t</u></em><em><u>s</u></em><em><u> </u></em><em><u>g</u></em><em><u>i</u></em><em><u>v</u></em><em><u>e</u></em><em><u>n</u></em><em><u> </u></em><em><u>o</u></em><em><u>n</u></em><em><u> </u></em><em><u>t</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>g</u></em><em><u>r</u></em><em><u>a</u></em><em><u>p</u></em><em><u>h</u></em><em><u> </u></em><em><u>A</u></em><em><u> </u></em><em><u>a</u></em><em><u>n</u></em><em><u>d</u></em><em><u> </u></em><em><u>B</u></em>

<em><u>T</u></em><em><u>o</u></em><em><u> </u></em><em><u>f</u></em><em><u>i</u></em><em><u>n</u></em><em><u>d</u></em><em><u> </u></em><em><u>:</u></em><em><u> </u></em><em><u> </u></em><em><u>T</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>d</u></em><em><u>i</u></em><em><u>s</u></em><em><u>t</u></em><em><u>a</u></em><em><u>n</u></em><em><u>c</u></em><em><u>e</u></em><em><u> </u></em><em><u>i</u></em><em><u>n</u></em><em><u> </u></em><em><u>b</u></em><em><u>e</u></em><em><u>t</u></em><em><u>w</u></em><em><u>e</u></em><em><u>e</u></em><em><u>n</u></em><em><u> </u></em><em><u>t</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>t</u></em><em><u>w</u></em><em><u>o</u></em><em><u> </u></em><em><u>p</u></em><em><u>o</u></em><em><u>i</u></em><em><u>n</u></em><em><u>t</u></em><em><u>s</u></em><em><u> </u></em><em><u>w</u></em><em><u>e</u></em><em><u> </u></em><em><u>k</u></em><em><u>n</u></em><em><u>o</u></em><em><u>w</u></em><em><u> </u></em><em><u>d</u></em><em><u>i</u></em><em><u>s</u></em><em><u>t</u></em><em><u>a</u></em><em><u>n</u></em><em><u>c</u></em><em><u>e</u></em><em><u> </u></em><em><u>i</u></em><em><u>n</u></em><em><u> </u></em><em><u>b</u></em><em><u>e</u></em><em><u>t</u></em><em><u>w</u></em><em><u>e</u></em><em><u>e</u></em><em><u>n</u></em><em><u> </u></em><em><u>t</u></em><em><u>w</u></em><em><u>o</u></em><em><u> </u></em><em><u>p</u></em><em><u>o</u></em><em><u>i</u></em><em><u>n</u></em><em><u>t</u></em><em><u> </u></em><em><u>o</u></em><em><u>n</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>g</u></em><em><u>r</u></em><em><u>a</u></em><em><u>p</u></em><em><u>h</u></em><em><u> </u></em>

<em><u>=</u></em><em><u> </u></em>

<em><u>\sqrt{ {(x2 - x1)}^{2} }  +  \sqrt{ {(y2 - y1)}^{2} }</u></em>

<em><u>T</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>P</u></em><em><u>o</u></em><em><u>i</u></em><em><u>n</u></em><em><u>t</u></em><em><u> </u></em><em><u>A</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>(</u></em><em><u>0</u></em><em><u>,</u></em><em><u>0</u></em><em><u>)</u></em>

<em><u>T</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>p</u></em><em><u>o</u></em><em><u>i</u></em><em><u>n</u></em><em><u>t</u></em><em><u> </u></em><em><u>B</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>(</u></em><em><u>3</u></em><em><u>,</u></em><em><u>6</u></em><em><u>)</u></em>

<em><u>s</u></em><em><u>o</u></em><em><u> </u></em><em><u>t</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>d</u></em><em><u>i</u></em><em><u>s</u></em><em><u>t</u></em><em><u>a</u></em><em><u>n</u></em><em><u>c</u></em><em><u>e</u></em><em><u> </u></em><em><u>i</u></em><em><u>n</u></em><em><u> </u></em><em><u>b</u></em><em><u>e</u></em><em><u>t</u></em><em><u>w</u></em><em><u>e</u></em><em><u>e</u></em><em><u>n</u></em><em><u> </u></em><em><u>p</u></em><em><u>o</u></em><em><u>i</u></em><em><u>n</u></em><em><u>t</u></em><em><u>s</u></em><em><u> </u></em><em><u>A</u></em><em><u> </u></em><em><u>a</u></em><em><u>n</u></em><em><u>d</u></em><em><u> </u></em><em><u>B</u></em><em><u> </u></em>

<em><u>\sqrt{ {(0 - 0)}^{2} }  +  \sqrt{ {(6 - 3)}^{2} }</u></em>

<em><u>\sqrt{ {3}^{2} }</u></em>

<em><u>3</u></em>

So 3.0 is the distance

Hope it helps

7 0
2 years ago
Which Answer is a solution to the inequality?
marusya05 [52]

Answer:

The answer is D) (-1, -1)

Step-by-step explanation:

In order to find which answer is a solution, you have to put the ordered pair in for their given variables. If it produces a true statement, then it is a solution. In this case, D is the only one that produces a true statement.

2x + y > -4

2(-1) + (-1) > -4

-2 - 1 > -4

-3 > -4 (TRUE)

8 0
3 years ago
Other questions:
  • One angle of a triangle has a measure of 66. The measure of the third angle is 57 more than 1/2 the measure of the second angle.
    9·1 answer
  • Sammy’s Pizza Shop offers 2 different pizza crusts, 3 different cheeses, and 8 different toppings. How many combinations of pizz
    15·2 answers
  • a bag contains 4 blue and 3 yellow marbles.The marbles are removed from the bag one at a time without replacement. what is the p
    6·1 answer
  • What is the length of this line? khan academy - Distance between two points
    12·1 answer
  • What is the equation 2y+4n=-6x in slope-intercept form
    9·1 answer
  • 6. Which is equivalent to the following expression?
    5·1 answer
  • If the tax rate is 8.3% what is the tax on 196.44
    6·1 answer
  • B. 3 ice cream cones cost $3.75.<br> At this rate, how much do 2 ice cream cones cost?
    5·2 answers
  • As a nurse, part of your daily duties is to mix medications in the proper proportions for your patients. For one of your regular
    14·1 answer
  • Sam found that is the product of 5 and a number is increased by 8 the result is 10 more than the product of 3 and the number wha
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!