Answer:
1
Use the quadratic formula
=
−
±
2
−
4
√
2
x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}
x=2a−b±b2−4ac
Once in standard form, identify a, b, and c from the original equation and plug them into the quadratic formula.
2
+
5
−
2
=
0
x^{2}+5x-2=0
x2+5x−2=0
=
1
a={\color{#c92786}{1}}
a=1
=
5
b={\color{#e8710a}{5}}
b=5
=
−
2
c={\color{#129eaf}{-2}}
c=−2
=
−
5
±
5
2
−
4
⋅
1
(
−
2
)
√
2
⋅
1
Step-by-step explanation:
this should help
The first answer is c
42cm(2)
<span><span><span><span>(<span>15^2</span>)</span><span>(<span>y^2</span>)</span></span>−<span>x^3</span></span>+7</span><span>=<span><span><span><span>225<span>y^2</span></span>+</span>−<span>x^3</span></span>+7</span></span>
<span>=<span><span><span>−<span>x^3</span></span>+<span>225<span>y^2</span></span></span>+<span>7</span></span></span>
Answer:
0 because it has no value.
Step-by-step explanation: