Answer:
E = 29.7× 10⁻²⁰ j
Explanation:
Given data;
Frequency of light = 4.48 × 10¹⁴ Hz
Energy of photon = ?
Solution:
Formula:
E = h.f
E = energy of photon
h = planck's constant
f = frequency
E = h.f
E = 6.63 × 10⁻³⁴ Kg.m² /s × 4.48 × 10¹⁴ s⁻¹
E = 29.7× 10⁻²⁰ Kg.m²/s²
Kg.m²/s² = j
E = 29.7× 10⁻²⁰ j
Answer:
For Mass N, Mass H, and Mass O, the mass is 28.0 g N, 4.0 g H, and 48.0 g respectively
Explanation:
The computation of the mass of each element is given below:
As we know that
A1 mole of ammonium nitrate i.e. 2 mol N, 4 mol H, 3 mol
Now we multiply each of above by the molar masses
For N
= 14.0 g/mol × 2
= 28.0 gN
For H
= 1.0 g/mol × 4
= 4.0 gN
ANd, for O
= 16.0 g/mol × 3
= 48.0 gN
Hence, For Mass N, Mass H, and Mass O, the mass is 28.0 g N, 4.0 g H, and 48.0 g respectively
Explanation:
Chromosomal DNA is packaged inside microscopic nuclei with the help of histones. These are positively-charged proteins that strongly adhere to negatively-charged DNA and form complexes called nucleosomes. Each nuclesome is composed of DNA wound 1.65 times around eight histone proteins.
Answer:
im pretty sure the answer to your question is false sorry if its wrong.
Explanation:
Answer:
209.68
Explanation:
The only number that is relevant (though the rest are quite interesting) is the last one 1.98 * 10^24
1 mole of Barium Acetate Contains 6.02*10^23 particles.
There are 4 moles of carbon to every mole of Barium Acetate.
1.98 * 10^24 atoms / (4*6.02*10^23)
0.8223 moles of Ba(C2H3O2)2
Ba = 137
4C = 4*12 48
6H = 6*1 6
4O = 4*16 64
1mole 255 grams
0.8223 * 255 = 209.68 grams
I have used rounded masses for these elements depending on the periodic table you use. Go through the question with your masses to get a more accurate answer. My answer will not differ by much. It is a guide.