Multiply it by 4 then it would taste the same as the one batch
The first step is to determine the zeros of p(x).
From the Remainder Theorem,
p(a) = 0 => (x-a) is a factor of p(x), and x=a is a zero of p(x).
Try x=3:
p(3) = 3^3 - 3*3^2 - 16*3 + 48 = 27 - 27 - 48 + 48 = 0
Therefore x=3 is a zero, and (x-3) is a factor of p(x).
Perform long division.
x² - 16
-------------------------------------
x-3 | x³ - 3x² - 16x + 48
x³ - 3x²
-----------------------------------
- 16x + 48
- 16x + 48
Note that x² - 6 = (x+4)(x-4).
Therefore the complete factorization of p(x) is
p(x) = (x-3)(x+4)(x-4)
To determine when p(x) is negative, we shall test between the zeros of p(x)
x p(x) Sign
---- --------- ---------
-4 0
0 48 +
3 0
3.5 -1.875 -
4 0
p(x) is negative in the interval x = (3, 4).
Answer
The time interval is Jan. 1, 2014 to Jan. 1, 2015.
Answer:
1) SAT average divided by budget per student
Graduation rate divided by budget per student
2) No. The definitions have opposite results
Step-by-step explanation:
did it on khan academy
Answer:
x^2 + 4x * (3 - sqrt(x)) - 2(5 + sqrt(x))
Step-by-step explanation:
Firstly let us split this up, we need to first work out what g(h(x)) is:
h(x) = Sqrt(x) so g(h(x)) = g(sqrt(x)) = sqrt(x) - 2
Now to work out f(g(h(x))) = f(sqrt(x) - 2) = (sqrt(x) - 2)^4 + 6
= (sqrt(x) - 2) * (sqrt(x) - 2) * (sqrt(x) - 2) * (sqrt(x) - 2) - 6
= (x - 2 * sqrt(x) + 4) * (x - 2 * sqrt(x) + 4) - 6
= x^2 - 2x * sqrt(x) + 4x - 2x * sqrt(x) + 4x - 8 * sqrt(x) + 4x - 8 * sqrt(x) + 16 - 6
= x^2 - 4x * sqrt(x) + 12x - 16 * sqrt(x) + 10
= x^2 + 4x * (3 - sqrt(x)) - 2(5 + sqrt(x))
We have: x ×
÷
= x ×
×
= x ×
= x ÷
ANSWER: E. 4/5
Ok done. Thank to me :>