<span>Stoichiometry deals with the quantitative measurement of reactants and products in a chemical reaction. Let suppose you are given with following reaction;
A + 2 B </span>→ 3 C
According to this reaction 1 mole of A reacts with 2 moles of B to produce 3 moles of C. Now using the concept of mole one can easily measure the amount of reactants reacted and the amount of product formed, as...
1 Mole Exactly equals 6.022 × 10²³ particles
1 Mole of Gas (at STP) exactly occupies 22.4 L Volume
1 Mole of any compound exactly equals the molar mass in grams
Therefore, <span>Stoichiometry is very helpful in quantitative analysis.</span>
First let us see what
kind of bonds are formed in the compound. By drawing the structure, we see that
the kind of bonds are:
N =- triple bond -= C –
O
<span>So there is only
single bond between C and O therefore the hybridization of C is sp.</span>
Answer:
Z=22.70
Explanation:
It is given that,
An element Z that has two naturally occurring isotopes with the following percent abundances as follows :
The isotope with a mass number 22 is 65.0% abundant; the isotope with a mass number 24 is 35.0% abundant.
The average atomic mass for element Z is given by :

So, the average atomic mass for element Z is 22.70.
Answer:
31.5 mL of a 2.50M NaOH solution
Explanation:
Molarity (M) is an unit of concentration defined as moles of solute (In this case, NaOH), per liter of solvent. That is:
Molarity = moles solute / Liter solvent
If you want to make 525mL (0.525L) of a 0.150M of NaOH, you need:
0.525L × (0.150mol / L) = <em>0.07875 moles of NaOH</em>
<em />
If you want to obtain these moles from a 2.50M NaOH solution:
0.07875mol NaOH × (1L / 2.50M) = 0.0315L = <em>31.5 mL of a 2.50M NaOH solution</em>
Answer:
The final state of the substance is a gas.
The sample is initially a liquid. One or more phase changes will occur.
Explanation:
Let's consider the phase diagram for Argon (not to scale).
<em>A sample of argon is initially at a pressure of 49.6 atm and a temperature of 101.4 K. The pressure on the sample is reduced to 0.680 atm at a constant temperature of 101.4 K. Which of the following are true? Choose all that apply </em>
<em>The final state of the substance is a gas.</em> TRUE. At 0.680 atm and 101.4 K, the substance is a gas.
<em>The gas initially present will solidify.</em> FALSE. Initially, Ar is present as a liquid.
<em>The final state of the substance is a solid.</em> FALSE.
<em>The sample is initially a liquid. One or more phase changes will occur.</em> TRUE. The sample is initially liquid and only one phase change will occur.