Answer:
Two hundred million years ago, Antarctica was a lush, temperate rainforest home to crocodile-sized amphibians and rhinoceros-sized dinosaurs.
Explanation:
Animals:
1 ankylosaurs (the armored dinosaurs), mosasaurs and plesiosaurs (both marine reptilian groups).
2 Cry-oloph-os-auru-s was the ap-ex pre-da-tor of its region when it hunted in the lands of Jur-as-sic Period Antarctica.
3 plesiosaurs.
4 mosasaurs.
Plants:
1 palm trees.
2 ferns and Tanglefoot.
3 Evergreen trees
4 Glossopteris
Answer:
2.318032g
Explanation:
-The electrolysis equation of water is written as below:

-The mole ratio of Water to the hydrogen formed is 1:1, therefore 2.3 moles of hydrogen gas is produced.
-Hydrogen's molar mass is 1.00784 grams:

Hence, 2.318032 grams of hydrogen is produced.
Answer:
The balanced chemical equation: NH₃ + 2 HF → NH₄⁺ + HF₂⁻
Explanation:
According to the Brønsted–Lowry acid–base theory, the acid- base reaction is a type of chemical reaction between the acid and base to give a conjugate acid and a conjugate base.
In this reaction, a Brønsted–Lowry acid loses a proton to form a conjugate base. Whereas, a Brønsted–Lowry base accepts a proton to form a conjugate acid.
Acid + Base ⇌ Conjugate Base + Conjugate Acid
The acid dissociation constant (Kₐ) <em>signifies the acidic strength of a chemical species.</em>
∵ pKₐ = - log Kₐ
Thus for a strong acid, Kₐ value is large and pKₐ value is small.
pKₐ (HF) = 3.2 → strong acid
pKₐ (NH₃) = 38 → weak acid
<u>The chemical reaction involved in the dissolution process:</u>
NH₃ + 2 HF → NH₄⁺ + HF₂⁻
In this acid-base reaction, the acid HF reacts with NH₃ base to give the conjugate base HF₂⁻ and conjugate acid NH₄⁺.
<u>HF (acid) donates a proton to form the conjugate base, HF₂⁻ ion. NH₃ (base) accepts a proton to form the conjugate acid. </u>
n=20 mol
(NH)4 SO4
Atomic masses :
N- 14
H- 1
S- 32
O- 16
Therefore M= 14×2 + 1×8 + 32 + 16×4
= 132
m= nM
= 20×132
= 2640g
<h3>What is spectrometric method?</h3>
- A technique called spectrophotometry uses light intensity measurements as a beam of light travels through a sample solution to determine how much a chemical compound absorbs light.
- Every chemical either absorbs or transmits light across a specific spectrum of wavelengths, according to the fundamental principle.
- There are two main techniques used among the various forms of spectrophotometry:
- ultraviolet-visible range spectrophotometry, which examines the reflectance of certain spectra,
- and absorption spectrophotometry, which examines the absorption of radiation and particular spectra of light.
- Applications of spectrophotometry are useful for determining how well gases, liquids, and solids transmit, reflect, and absorb light.
Learn more about spectrometric method here:
brainly.com/question/18339003
#SPJ4