When you understand the etymologies of scientific terms, they make a lot of sense in relation to the term. The etymologies themselves often serve as a reasonably okay definition for the term.
Here's an example, many scientific terms have Greek or Latin etymologies. Take "archaeology" (for an example) Etymologically, it consists of two Greek words "archaeo" (old, ancient) and "logos" (a word, discourse, or study). Therefore, etymologically "archaeology" means "the study of old/ancient things."
hope this helps!
17. ΔH rxn is the enthalpy of a reaction. It is the amount of energy or heat absorbed in a reaction. If enthalpy is positive, it means the reaction absorbs heat, which means it is endothermic. If the enthalpy is negative, it means the reaction release heat, which means it is exothermic.
18. yes, it is possible in theory but it is not necessary. Water is the ideal, cheaper, and most abundant liquid for a calorimeter.
19. Specific heat= heat/mass*Temp. the mass is already known You can place the piece of metal in a calorimeter filled with water. the piece of metal and water must be at different temperatures. Ideally, you would heat up the water and let it cool down. This change in temperature in the temperature that goes into the formula for the piece of metal. The only missing value is the heat which can be easily calculated because water' specific heat is known which can be used to calculate the heat loss by the water, which is the same as the heat gain by the piece of metal. With all the three values calculated and measured, you can simply plug them into the formula and solve for the specific heat of the metal.
The amount of current required to produce 75. 8 g of iron metal from a solution of aqueous iron (iii)chloride in 6. 75 hours is 168.4A.
The amount of Current required to deposit a metal can be find out by using The Law of Equivalence. It states that the number of gram equivalents of each reactant and product is equal in a given reaction.
It can be found using the formula,
m = Z I t
where, m = mass of metal deposited = 75.8g
Z = Equivalent mass / 96500 = 18.6 / 96500 = 0.0001
I is the current passed
t is the time taken = 75hour = 75 × 60 = 4500s
On subsituting in above formula,
75.8 = E I t / F
⇒ 75.8 = 0.0001 × I × 4500
⇒ I = 168.4 Ampere (A)
Hence, amount of current required to deposit a metal is 168.4A.
Learn more about Law of Equivalence here, brainly.com/question/13104984
#SPJ4
Answer:
SiH4 is nonpolar and BBr3 is nonpolar and SiF4 is nonpolar.
Explanation:
SiH4 is a non-polar compound. Though the Si–H bonds are polar, as a result of different electronegativities of Si and H. However, as there are 4 electron repulsions around the central Si atom, the polar bonds are arranged symmetrically around the central atom having a tetrahedral shape hence they cancel out making the compound nonpolar.
SiF4 is a nonpolar molecule because the fluorine atoms are arranged symetrically around the central silicon atom in a tetrahedral molecule with all of the regions of negative charge cancelling each other out just like in SiH4.
The 3 bromine atoms all lie in the same plane thus the geometry of the compound will be trigonal planar. The BBr3 will be non polar because the three B-Br bonds will cancel out each others' dipole moment given that they are in the same plane.
There are 11 Carbon atoms in the compound.
<u>Solution:</u>
Carbon atom count is the ratio of the M peak to the M+1 peak.

Here M peak is 57.10% and M+1 peak is 6.83%. On applying the values in the formula we get,

Therefore, the number of Carbon atoms in the compound are 11.
Refer the image attached below for a better understanding of M peak and M+1 peak.
The heaviest ion that has the greatest m/z value is said to be the molecular ion peak in mass spectrum.