Answer:
hope it would help you
Step-by-step explanation:
the ans should be A
mark my ans as BRAIN LIST
Over time, compound interest at any rate will outperform simple interest. When the rates are nearly equal to start with, compound interest will be greater in very short order. Here, it takes less than 1 year for compound interest to give a larger account balance.
In 30 years, the simple interest will be
... I = P·r·t = 12,000·0.07·30 = 25,200
In 30 years, the compound interest will be
... I = P·(e^(rt) -1) = 12,000·(e^(.068·30) -1) ≈ 80,287.31
_____
6.8% compounded continuously results in more total interest
Answer:
Step-by-step explanation:
I think you have the question incomplete, and that this is the complete question
sin^4a + cos^4a = 1 - 2sin^2a.cos^2a
To do this, we can start my mirroring the equation.
x² + y² = (x + y)² - 2xy,
This helps us break down the power from 4 to 2, so that we have
(sin²a)² + (cos²a)² = (sin²a + cos²a) ² - 2(sin²a) (cos²a)
Recall from identity that
Sin²Φ + cos²Φ = 1, so therefore
(sin²a)² + (cos²a)² = 1² - 2(sin²a) (cos²a)
On expanding the power and the brackets, we find that we have the equation proved.
sin^4a + cos^4a = 1 - 2sin^2a.cos^2a
The answer would be <span>eleven million seven hundred sixty thousand eight hundred twenty five
</span>
Answer:
77
Step-by-step explanation:
7 (3 + 2*4) =
7 (3 + 8) =
7 (11) =
7 * 11 =
77