Answer:
208 
Step-by-step explanation:
We can find the area of the net by adding up the area of each of the 6 rectangles that make up the net. Since two of each rectangle are the same, we only have to find the area of the 3 different sized rectangles and multiply each by 2.
Rectangle pairs are:
- Left rectangle and right rectangle
- Top rectangle and the rectangle above the bottom rectangle
- Bottom rectangle and the rectangle surrounded by all for sides
Now, let's solve the question.
Left rectangle:
6 x 4 = 24, rectangle has area of 24 squared cm
Top rectangle:
6 x 8 = 48, rectangle has area of 48 squared cm
Bottom rectangle:
4 x 8 = 32, rectangle has area of 32 squared cm
Add up the areas:
(24 x 2) + (48 x 2) + (32 x 2) = 208
The rectangle has a surface area of 208 squared cm
<em>AC bisects ∠BAD, => ∠BAC=∠CAD ..... (1)</em>
<em>thus in ΔABC and ΔADC, ∠ABC=∠ADC (given), </em>
<em> ∠BAC=∠CAD [from (1)],</em>
<em>AC (opposite side side of ∠ABC) = AC (opposite side side of ∠ADC), the common side between ΔABC and ΔADC</em>
<em>Hence, by AAS axiom, ΔABC ≅ ΔADC,</em>
<em>Therefore, BC (opposite side side of ∠BAC) = DC (opposite side side of ∠CAD), since (1)</em>
<em />
Hence, BC=DC proved.
X>7/6
Combine like terms
Subtract 2.75x from both sides
Combine like terms
Divide -1.5 from both sides
Use Picture Math, i cant type in the other cause brainly doesn't accept it but it is Ga_thMath. (u)