A polynomial is the sum of at least one term. For example, x^3+1 is a polynomial. A monomial is a polynomial with only one term, such as 2x^2.
A binomial is a polynomial with two terms, and a trinomial is one with three terms. The example you gave is a trinomial (which is also a polynomial).
Degree of a polynomial is the largest sum of variable powers in any term of the polynomial. So, for example, x^2 y has degree 3, and x^3+x^2 also has degree 3. A sixth degree polynomial would be x^6-2x+1, for example.
Answer:
12
Step-by-step explanation:
x -
= 8.5
x -
= 8.5 Convert the mixed fraction to a imroper fraction.
x - 3.5 = 8.5 Convert the improper fraction to a decimal number.
x = 12 Add 3.5 to both sides.
Is that your test or homework
Perimeter of rectangle = length + length + width + width
To find the combinations, think of two numbers that each multiplied by 2 and added up to give 12 or 14
Rectangle with perimeter 12
Say we take length = 2 and width = 3
Multiply the length by 2 = 2 × 2 = 4
Multiply the width by 3 = 2 × 3 = 6
Then add the answers = 4 + 6 = 10
This doesn't give us perimeter of 12 so we can't have the combination of length = 2 and width = 3
Take length = 4 and width = 2
Perimeter = 4+4+2+2 = 12
This is the first combination we can have
Take length = 5 and width = 1
Perimeter = 5+5+1+1 = 12
This is the second combination we can have
The question doesn't specify whether or not we are limited to use only integers, but if it is, we can only have two combinations of length and width that give perimeter of 12
length = 4 and width = 2
length = 5 and width = 1
--------------------------------------------------------------------------------------------------------------
Rectangle with perimeter of 14
Length = 4 and width = 3
Perimeter = 4+4+3+3 = 14
Length = 5 and width = 2
Perimeter = 5+5+2+2 = 14
Length = 6 and width = 1
Perimeter = 6+6+1+1 = 14
We can have 3 different combinations of length and width
The lot costs 5000 dollars.
<u>Step-by-step explanation:</u>
The cost of a House and the lot = $40,000.
Let us assume the cost of lot as 'x'
Given that, The cost of the house is 7 times as much as the lot.
Therefore, The cost of the house= 7x
The cost of both the house and the lot= x + 7x
$40,000 = x + 7x
40,000 = 8x
x = 40,000/8
x = 5,000
The lot costs $5000.