Answer:
The mass of oxygen is 12.10 g.
Explanation:
The decomposition reaction of potassium chlorate is the following:
2KClO₃(s) → 2KCl(s) + 3O₂(g)
We need to find the number of moles of KClO₃:

Where:
m: is the mass = 30.86 g
M: is the molar mass = 122.55 g/mol
Now, we can find the number of moles of O₂ knowing that the ratio between KClO₃ and O₂ is 2:3
Finally, the mass of O₂ is:

Therefore, the mass of oxygen is 12.10 g.
I hope it helps you!
The mass number = protons + neutrons. Bromine has a mass number of 80<span> and 35 protons so </span>80<span>-35 = </span>45<span> neutrons. b) How many electrons does the neutral atom of bromine have? The neutral atom of bromine has 35 electrons because the number of electrons equals the number of protons.</span>
Answer:
2K +F₂→ 2KF
Explanation:
When we balance an equation, we are trying to ensure that the number of atoms of each element is the same on both sides of the arrow.
On the left side of the arrow, there is 1 K atom and 2 F atoms. On the right, there is 1 K and 1 F atom.
Since the number of K atoms is currently balanced, balance the number of F atoms.
K +F₂→ 2KF
Now, that the number of F atoms is balanced on both sides, check if the number of K atoms are balanced.
<u>Left</u>
K atoms: 1
F atoms: 2
<u>Right</u>
K atoms: 2
F atoms: 2
The number of K atoms is not balanced.
2K +F₂→ 2KF
<u>Left</u>
K atoms: 2
F atoms: 2
<u>Right</u>
K atoms: 2
F atoms: 2
The equation is now balanced.
Answer:
The three-step synthesis of trans-2-pentene from acetylene is as follows.
<u>Step -1:</u> Formation of higher order terminal alkyne on reaction with sodium acetylides with haloalkanes.
<u>Step -2:</u> Formation terminal alkyne to nonterminal alkynes.
<u>Step -3:</u> Formation of trans-pent - 2-pent-ene by reduction.
Explanation:
Synthesis of trans-pent-2-yne from ethyne takes place is mainly a three step synthesis which involves formation of higher order terminal alkyne on reaction with sodium acetylides with haloalkane. Second step involves the further alkylation of terminal alkynes to higher order nonterminal alkynes and the third step involves the formation of trans-2-ene by dissolving reduction method.
The chemical reaction of each step of chemical reactions is as follows.