<h3>Answer:</h3>
The New pressure (750 mmHg) is greater than the original pressure (500 mmHg) hence, the new volume (6.0 mL) is smaller than the original volume (9.0 mL).
<h3>Solution:</h3>
According to Boyle's Law, " <em>The Volume of a given mass of gas at constant temperature is inversely proportional to the applied Pressure</em>". Mathematically, the initial and final states of gas are given as,
P₁ V₁ = P₂ V₂ ----------- (1)
Data Given;
P₁ = 500 mmHg
V₁ = 9.0 mL
P₂ = 750 mmHg
V₂ = ??
Solving equation 1 for V₂,
V₂ = P₁ V₁ / P₂
Putting values,
V₂ = (500 mmHg × 9.0 mL) ÷ 750 mmHg
V₂ = 6.0 mL
<h3>Result:</h3>
The New pressure (750 mmHg) is greater than the original pressure (500 mmHg) hence, the new volume (6.0 mL) is smaller than the original volume (9.0 mL).
Answer:
o.251 prduces 45.7L of oxogen
Explanation:
hope this helps
<u>Answer:</u> C) be hypertonic to Tank B.
<u>Explanation: </u>
<u>
The ability of an extracellular solution to move water in or out of a cell by osmosis</u> is known as its tonicity. Additionally, the tonicity of a solution is related to its osmolarity, which is the <u>total concentration of all the solutes in the solution.
</u>
Three terms (hypothonic, isotonic and hypertonic) are used <u>to compare the osmolarity of a solution with respect to the osmolarity of the liquid that is found after the membrane</u>. When we use these terms, we only take into account solutes that can not cross the membrane, which in this case are minerals.
- If the liquid in tank A has a lower osmolarity (<u>lower concentration of solute</u>) than the liquid in tank B, the liquid in tank A would be hypotonic with respect to the latter.
- If the liquid in tank A has a greater osmolarity (<u>higher concentration of solute</u>) than the liquid in tank B, the liquid in tank A would be hypertonic with respect to the latter.
- If the liquid in tank A has the same osmolarity (<u>equal concentration of solute</u>) as the liquid in tank B, the liquid in tank A would be isotonic with respect to the latter.
In the case of the problem, option A is impossible because the minerals can not cross the membrane, since it is permeable to water only. There is no way that the concentration of minerals decreases in tank A, so <u>the solution in this tank can not be hypotonic with respect to the one in Tank B. </u>
Equally, both solutions can not be isotonic and neither we can say that the solution in tank A has more minerals that the one in tank B because the liquid present in tank B is purified water that should not have minerals. Therefore, <u>options B and D are also not correct.</u>
Finally, the correct option is C, since in the purification procedure the water is extracted from the solution in tank A to obtain a greater quantity of purified water in tank B. In this way, the solution in Tank A would be hypertonic to Tank B.
Everything requires energy to move. If the desk is moving, then it has energy.