Answer:
239.7 g
Explanation:
Step 1: Write the balanced equation
2 LiBr + I₂ → 2 LiI + Br₂
Step 2: Convert the molecules of iodine to moles
We have 9.033 × 10²³ particles (molecules) of iodine. In order to convert molecules to moles, we will use the <em>Avogadro's number</em>: there are 6.022 × 10²³ molecules of iodine in 1 mole of iodine.

Step 3: Calculate the moles of bromine produced
The <em>molar ratio of I₂ to Br₂</em> is 1:1. Then, the moles of bromine produced are 1.500 moles.
Step 4: Calculate the mass of bromine
The <em>molar mass of bromine</em> is 159.81 g/mol. The mass corresponding to 1.500 moles is:

Answer: combustion
Explanation:
Combustion reactions can be identified by looking at the reactants and the products.
Usually, the reactants will be a hydrocarbon and oxygen. And the products will be CO2 and H2O
This problem is providing us with the mass of hydrochloric acid and the volume of solution and asks for the pH of the resulting solution, which turns out to be 1.477.
<h3>pH calculations</h3>
In chemistry, one can calculate the pH of a solution by firstly obtaining its molarity as the division of the moles of solute by the liters of solution, so in this case for HCl we have:

Next, due to the fact that hydrochloric acid is a strong acid, we realize its concentration is nearly the same to the released hydrogen ions to the solution upon ionization. Thereby, the resulting pH is:

Which conserves as much decimals as significant figures in the molarity.
Learn more about pH calculations: brainly.com/question/1195974
Answer is: MgF₂, magnesium fluoride.
Magnesium fluoride is salt, ionic compound, because magnesium is metal from 2. group of Periodic table of elements and has low ionisation energy and electronegativity, which means it easily lose valence electons, fluorine is nonmetal with greatest electronegativity, which meand it easily gain electron, so magnesium cation (Mg²⁺) and fluorine anion (F⁻) are formed.