Answer:
24000 pieces.
Step-by-step explanation:
Given:
Side lengths of cube = 
The part of the truck that is being filled is in the shape of a rectangular prism with dimensions of 8 ft x 6 1/4 ft x 7 1/2 ft.
Question asked:
What is the greatest number of packages that can fit in the truck?
Solution:
First of all we will find volume of cube, then volume of rectangular prism and then simply divide the volume of prism by volume of cube to find the greatest number of packages that can fit in the truck.


Length = 8 foot, Breadth =
, Height =


The greatest number of packages that can fit in the truck = Volume of prism divided by volume of cube
The greatest number of packages that can fit in the truck = 
Thus, the greatest number of packages that can fit in the truck is 24000 pieces.
For this case, the first thing you should do is define a variable.
We have then:
t: temperature (degree Fahrenheit).
We write then the inequation that adapts to the problem:
t> = 451
Answer:
an inequality that is true only for temperatures at which books spontaneously catch on fire is:
t> = 451
Answer:
y = (x/(1-x))√(1-x²)
Step-by-step explanation:
The equation can be translated to rectangular coordinates by using the relationships between polar and rectangular coordinates:
x = r·cos(θ)
y = r·sin(θ)
x² +y² = r²
__
r = sec(θ) -2cos(θ)
r·cos(θ) = 1 -2cos(θ)² . . . . . . . . multiply by cos(θ)
r²·r·cos(θ) = r² -2r²·cos(θ)² . . . multiply by r²
(x² +y²)x = x² +y² -2x² . . . . . . . substitute rectangular relations
x²(x +1) = y²(1 -x) . . . . . . . . . . . subtract xy²-x², factor
y² = x²(1 +x)/(1 -x) = x²(1 -x²)/(1 -x)² . . . . multiply by (1-x)/(1-x)

__
The attached graph shows the equivalence of the polar and rectangular forms.