1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lukranit [14]
3 years ago
6

Which of the following is a true statement?

Mathematics
1 answer:
musickatia [10]3 years ago
6 0

Answer:

C is true because when it comes to negative numbers, the closer it is to 0 the higher the value of the number is

You might be interested in
Can someone please help me!!!!
Schach [20]
<h2>Answer:</h2>

its 83

i have no explanation

6 0
3 years ago
The sale price of a pair of shoes is $28. This sale price is 70% of the original price What was the original price?​
Veseljchak [2.6K]

Answer:

original price = $40

Step-by-step explanation:

if 70% ---> $28 then

1% ---> $28/70 = $0.4

then we know original price should be 100%

original price = 100 * 0.4 = $40

OR

basic easy function:

(28/70) * 100

$40

5 0
2 years ago
Read 2 more answers
For any triangle ABC note down the sine and cos theorems ( sinA/a= sinB/b etc..)
SCORPION-xisa [38]

Answer:

Step-by-step explanation:

Law of sines is:

(sin A) / a = (sin B) / b = (sin C) / c

Law of cosines is:

c² = a² + b² − 2ab cos C

Note that a, b, and c are interchangeable, so long as the angle in the cosine corresponds to the side on the left of the equation (for example, angle C is opposite of side c).

Also, angles of a triangle add up to 180° or π.

(i) sin(B−C) / sin(B+C)

Since A+B+C = π, B+C = π−A:

sin(B−C) / sin(π−A)

Using angle shift property:

sin(B−C) / sin A

Using angle sum/difference identity:

(sin B cos C − cos B sin C) / sin A

Distribute:

(sin B cos C) / sin A − (cos B sin C) / sin A

From law of sines, sin B / sin A = b / a, and sin C / sin A = c / a.

(b/a) cos C − (c/a) cos B

From law of cosines:

c² = a² + b² − 2ab cos C

(c/a)² = 1 + (b/a)² − 2(b/a) cos C

2(b/a) cos C = 1 + (b/a)² − (c/a)²

(b/a) cos C = ½ + ½ (b/a)² − ½ (c/a)²

Similarly:

b² = a² + c² − 2ac cos B

(b/a)² = 1 + (c/a)² − 2(c/a) cos B

2(c/a) cos B = 1 + (c/a)² − (b/a)²

(c/a) cos B = ½ + ½ (c/a)² − ½ (b/a)²

Substituting:

[ ½ + ½ (b/a)² − ½ (c/a)² ] − [ ½ + ½ (c/a)² − ½ (b/a)² ]

½ + ½ (b/a)² − ½ (c/a)² − ½ − ½ (c/a)² + ½ (b/a)²

(b/a)² − (c/a)²

(b² − c²) / a²

(ii) a (cos B + cos C)

a cos B + a cos C

From law of cosines, we know:

b² = a² + c² − 2ac cos B

2ac cos B = a² + c² − b²

a cos B = 1/(2c) (a² + c² − b²)

Similarly:

c² = a² + b² − 2ab cos C

2ab cos C = a² + b² − c²

a cos C = 1/(2b) (a² + b² − c²)

Substituting:

1/(2c) (a² + c² − b²) + 1/(2b) (a² + b² − c²)

Common denominator:

1/(2bc) (a²b + bc² − b³) + 1/(2bc) (a²c + b²c − c³)

1/(2bc) (a²b + bc² − b³ + a²c + b²c − c³)

Rearrange:

1/(2bc) [a²b + a²c + bc² + b²c − (b³ + c³)]

Factor (use sum of cubes):

1/(2bc) [a² (b + c) + bc (b + c) − (b + c)(b² − bc + c²)]

(b + c)/(2bc) [a² + bc − (b² − bc + c²)]

(b + c)/(2bc) (a² + bc − b² + bc − c²)

(b + c)/(2bc) (2bc + a² − b² − c²)

Distribute:

(b + c)/(2bc) (2bc) + (b + c)/(2bc) (a² − b² − c²)

(b + c) + (b + c)/(2bc) (a² − b² − c²)

From law of cosines, we know:

a² = b² + c² − 2bc cos A

2bc cos A = b² + c² − a²

cos A = (b² + c² − a²) / (2bc)

-cos A = (a² − b² − c²) / (2bc)

Substituting:

(b + c) + (b + c)(-cos A)

(b + c)(1 − cos A)

From half angle formula, we can rewrite this as:

2(b + c) sin²(A/2)

(iii) (b + c) cos A + (a + c) cos B + (a + b) cos C

From law of cosines, we know:

cos A = (b² + c² − a²) / (2bc)

cos B = (a² + c² − b²) / (2ac)

cos C = (a² + b² − c²) / (2ab)

Substituting:

(b + c) (b² + c² − a²) / (2bc) + (a + c) (a² + c² − b²) / (2ac) + (a + b) (a² + b² − c²) / (2ab)

Common denominator:

(ab + ac) (b² + c² − a²) / (2abc) + (ab + bc) (a² + c² − b²) / (2abc) + (ac + bc) (a² + b² − c²) / (2abc)

[(ab + ac) (b² + c² − a²) + (ab + bc) (a² + c² − b²) + (ac + bc) (a² + b² − c²)] / (2abc)

We have to distribute, which is messy.  To keep things neat, let's do this one at a time.  First, let's look at the a² terms.

-a² (ab + ac) + a² (ab + bc) + a² (ac + bc)

a² (-ab − ac + ab + bc + ac + bc)

2a²bc

Repeating for the b² terms:

b² (ab + ac) − b² (ab + bc) + b² (ac + bc)

b² (ab + ac − ab − bc + ac + bc)

2ab²c

And the c² terms:

c² (ab + ac) + c² (ab + bc) − c² (ac + bc)

c² (ab + ac + ab + bc − ac − bc)

2abc²

Substituting:

(2a²bc + 2ab²c + 2abc²) / (2abc)

2abc (a + b + c) / (2abc)

a + b + c

8 0
3 years ago
A truck is leaving a post office and heading out to deliver mail. The table shows the truck's distance d from the post office at
zalisa [80]

Answer:

eliver mail. The table shows the truck's distance d from the post office at time t. Calculate the average rate of change over the interval from 8 to 15 minutes. t(min) d (km) 0 0 8 7 11 11 15 14 22 16 (1 point) The rate of change is about 0.8 kilometers per minute. The rate of change is 7 kilometers

7 0
3 years ago
Please help! acellus
ch4aika [34]

Answer:

The number that belongs <em>in</em> the green box is equal to 909.

General Formulas and Concepts:
<u>Algebra I</u>

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Trigonometry</u>

[<em>Right Triangles Only</em>] Pythagorean Theorem:
\displaystyle a^2 + b^2 = c^2

  • a is a leg
  • b is another leg
  • c is the hypotenuse

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify given variables</em>.

<em>a</em> = 30

<em>b</em> = 3

<em>c</em> = <em>x</em>

<em />

<u>Step 2: Find </u><u><em>x</em></u>

Let's solve for the <em>general</em> equation that allows us to find the hypotenuse:

  1. [Pythagorean Theorem] Square root both sides [Equality Property]:
    \displaystyle \begin{aligned}a^2 + b^2 = c^2 \rightarrow c = \sqrt{a^2 + b^2}\end{aligned}

Now that we have the <em>formula</em> to solve for the hypotenuse, let's figure out what <em>x</em> is equal to:

  1. [Equation] <em>Substitute</em> in variables:
    \displaystyle \begin{aligned}c & = \sqrt{a^2 + b^2} \\x & = \sqrt{30^2 + 3^2}\end{aligned}
  2. <em>Evaluate</em>:
    \displaystyle \begin{aligned}c & = \sqrt{a^2 + b^2} \\x & = \sqrt{30^2 + 3^2} \\& = \boxed{ \sqrt{909} } \\\end{aligned}

∴ the hypotenuse length <em>x</em> is equal to √909 and the number <em>under</em> the square root, our answer, is equal to 909.

___

Learn more about Trigonometry: brainly.com/question/27707750

___

Topic: Trigonometry

3 0
2 years ago
Other questions:
  • What are residuals in math
    15·1 answer
  • A spherical weather balloon is being inflated. The radius of the balloon is increasing at the rate of 7 cm/s. Express the surfac
    15·2 answers
  • Solving 2 step equation 3t-1=8
    12·1 answer
  • What dose waxing mean moon
    10·1 answer
  • A recursive rule for a geometric sequence is a1=8;an=34an−1.
    12·2 answers
  • Exponential growth and decay functions are written in standard form F (t)= A_0•b^kt, where A_0 is an initial amount, b is the gr
    12·2 answers
  • WILL MARK BRAINISETS IF ITS RIGHT PLS ANSWER​
    14·2 answers
  • A bowling alley charges a rental fee of $12 for the lane. They then charge $7.75 for each game bowled. If I have a total of $105
    13·2 answers
  • There are 12 boys in a class. If the boys make up 4/5 of the entire class, how many students are in the class?
    11·2 answers
  • Help me out please an thank you
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!