Answer:
0.053
Step-by-step explanation:
This is a geometric distribution problem.
I'm geometric distribution problem,
E(X) = 1/p
Where;
E(X) is expected value and p is probability of success
Thus;
1/p = 12.5
p = 1/12.5
p = 0.08
Now, to find the probability that the sixth person tested is the first one with high blood pressure, we will use the probability formula in geometric distribution which is;
P(X = k) = qⁿ•p
q = 1 - p
q = 1 - 0.08
q = 0.92
Thus;probability that the sixth person tested is the first one with high blood pressure will be expressed as;
P(X > 5) = (0.92^(5)) × 0.08
P(X > 5) = 0.053
Step-by-step explanation:
B = area of the base
= 9×4 = 36 square inches
P= perimeter of the base
= 2(9+4)
=2×13= 26 inches
H =distance between the bases
= 16 inches
SA= 2B+PH
= 2(36)+ 26× 16
= 72+416 = 488 square inches
Answer:
Step-by-step explanation:
The segment joining an original point with its rotated image forms a chord of the circle of rotation containing those two points. The center of the circle is the center of rotation.
This means you can find the center of rotation by considering the perpendicular bisectors of the segments joining points with their images. Here, the only proposed center that is anywhere near the perpendicular bisector of DE is point M.
__
Segment AD is perpendicular to corresponding segment FE, so the angle of rotation is 90°. (We don't know which way (CW or CCW) unless we make an assumption about which is the original figure.)