Hello!

Recall that:
is equal to
. Therefore:
![\sqrt[3]{x^{2} } = x^{\frac{2}{3} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E%7B2%7D%20%7D%20%3D%20x%5E%7B%5Cfrac%7B2%7D%7B3%7D%20%7D)
There is also an exponent of '6' outside. According to exponential properties, when an exponent is within an exponent, you multiply them together. Therefore:

Answer:
Second table.
Step-by-step explanation:
A function has an additive rate of change if there is a constant difference between any two consecutive input and output values.
The additive rate of change is determined using the slope formula,

From the first table we can observe a constant difference of -6 among the y-values and a constant difference of 2 among the x-values.

For the second table there is a constant difference of 3 among the y-values and a constant difference of 1 among the x-values.
The additive rate of change of this table is

Therefore the second table has an additive rate of change of 3.
Answer:
it will be 14.09
Step-by-step explanation:
Answer:
c
Step-by-step explanation:
Graph each side of the equation. The solution is the x-value of the point of intersection.
equals =1.25256565
Milli is the answer because it just is so yeah