1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
netineya [11]
3 years ago
13

Select all expressions that are equivalent to 2x+3x+8-3x-2.

Mathematics
1 answer:
dedylja [7]3 years ago
4 0

Answer:

2x+6 since the +3 and -3x cancel each other out your only left with 2x

You might be interested in
Trina and her mom are planting 45 plants in their garden.if their garden is 9 square feet how many plants can they put in each s
timurjin [86]
45÷9=5 they can put 5 plants in each square feet.
7 0
3 years ago
1. (5pts) Find the derivatives of the function using the definition of derivative.
andreyandreev [35.5K]

2.8.1

f(x) = \dfrac4{\sqrt{3-x}}

By definition of the derivative,

f'(x) = \displaystyle \lim_{h\to0} \frac{f(x+h)-f(x)}{h}

We have

f(x+h) = \dfrac4{\sqrt{3-(x+h)}}

and

f(x+h)-f(x) = \dfrac4{\sqrt{3-(x+h)}} - \dfrac4{\sqrt{3-x}}

Combine these fractions into one with a common denominator:

f(x+h)-f(x) = \dfrac{4\sqrt{3-x} - 4\sqrt{3-(x+h)}}{\sqrt{3-x}\sqrt{3-(x+h)}}

Rationalize the numerator by multiplying uniformly by the conjugate of the numerator, and simplify the result:

f(x+h) - f(x) = \dfrac{\left(4\sqrt{3-x} - 4\sqrt{3-(x+h)}\right)\left(4\sqrt{3-x} + 4\sqrt{3-(x+h)}\right)}{\sqrt{3-x}\sqrt{3-(x+h)}\left(4\sqrt{3-x} + 4\sqrt{3-(x+h)}\right)} \\\\ f(x+h) - f(x) = \dfrac{\left(4\sqrt{3-x}\right)^2 - \left(4\sqrt{3-(x+h)}\right)^2}{\sqrt{3-x}\sqrt{3-(x+h)}\left(4\sqrt{3-x} + 4\sqrt{3-(x+h)}\right)} \\\\ f(x+h) - f(x) = \dfrac{16(3-x) - 16(3-(x+h))}{\sqrt{3-x}\sqrt{3-(x+h)}\left(4\sqrt{3-x} + 4\sqrt{3-(x+h)}\right)} \\\\ f(x+h) - f(x) = \dfrac{16h}{\sqrt{3-x}\sqrt{3-(x+h)}\left(4\sqrt{3-x} + 4\sqrt{3-(x+h)}\right)}

Now divide this by <em>h</em> and take the limit as <em>h</em> approaches 0 :

\dfrac{f(x+h)-f(x)}h = \dfrac{16}{\sqrt{3-x}\sqrt{3-(x+h)}\left(4\sqrt{3-x} + 4\sqrt{3-(x+h)}\right)} \\\\ \displaystyle \lim_{h\to0}\frac{f(x+h)-f(x)}h = \dfrac{16}{\sqrt{3-x}\sqrt{3-x}\left(4\sqrt{3-x} + 4\sqrt{3-x}\right)} \\\\ \implies f'(x) = \dfrac{16}{4\left(\sqrt{3-x}\right)^3} = \boxed{\dfrac4{(3-x)^{3/2}}}

3.1.1.

f(x) = 4x^5 - \dfrac1{4x^2} + \sqrt[3]{x} - \pi^2 + 10e^3

Differentiate one term at a time:

• power rule

\left(4x^5\right)' = 4\left(x^5\right)' = 4\cdot5x^4 = 20x^4

\left(\dfrac1{4x^2}\right)' = \dfrac14\left(x^{-2}\right)' = \dfrac14\cdot-2x^{-3} = -\dfrac1{2x^3}

\left(\sqrt[3]{x}\right)' = \left(x^{1/3}\right)' = \dfrac13 x^{-2/3} = \dfrac1{3x^{2/3}}

The last two terms are constant, so their derivatives are both zero.

So you end up with

f'(x) = \boxed{20x^4 + \dfrac1{2x^3} + \dfrac1{3x^{2/3}}}

8 0
2 years ago
A table is in the shape of a regular pentagon with a side length of 3 feet and an
ehidna [41]

Answer:

15.5 ft²

Step-by-step explanation:

The area (A)  of a regular polygon is calculated as

A = \frac{1}{2} pa ( p is the perimeter and a the apothem )

Here side of regular pentagon is 3 ft, thus

perimeter = 5 × 3 = 15, so

A = 0.5 × 15 × 2.06 ≈ 15.5 ft ( to the nearest tenth )

8 0
3 years ago
Select the correct answer.
yuradex [85]

Answer:

A

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
According to Newton’s third law, for every action, there is an equal and opposite
Furkat [3]
True? I dont know what you're trying to ask. if you're asking whether or not it's true, it is.
5 0
3 years ago
Read 2 more answers
Other questions:
  • The function f(x) = 2.54 can be used to represent the curve through the points (1, 10), (2, 50), and (3, 250). What is the
    11·1 answer
  • Someone please help me!
    9·1 answer
  • There are about 16 kilometers in 10 miles. About how many kilometers are in 5 miles
    11·1 answer
  • Gavin cut grass for 8 weeks during the summer.He put the money he earned each week into his saving account.The table shows the a
    11·1 answer
  • Which is the correct first step in finding the height of a cylinder with a volume of 192 pi cubic inches and a radius of 5 inche
    15·1 answer
  • Write a positive or negative integer that represents the situation.
    12·1 answer
  • Please help!!<br> I’m so confused <br> And please don’t use the link joke
    14·1 answer
  • Help me with it I will give you 20 points ​
    12·1 answer
  • Given the triangle shown below, find the length of [BC]​
    13·1 answer
  • What is the volume of the triangular prism in cubic centimeters?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!