Answer:
SQUARE
Step-by-step explanation:
If Quadrilateral MNPQ has vertices M(4,0), N(0,6), P(-4,0) and Q(0, -6).
Find the following MN, NP, PQ and MQ
Using the formula for calculating the distance between two points
MN = √(6-0)²+(0-4)²
MN = √6²+4²
MN = √36+16
MN = √52
MN = 2√13
NP = √(0-6)²+(-4-0)²
NP = √6²+4²
NP = √36+16
NP = √52
NP = 2√13
PQ = √(-6-0)²+(0-(-4))²
PQ = √6²+4²
PQ = √36+16
PQ = √52
PQ = 2√13
MQ = √(-6-0)²+(0-4)²
MQ = √6²+4²
MQ = √36+16
MQ= √52
MQ = 2√13
Since the length of all the sides are equal, hence the shape is a SQUARE
So the perimeter(P) of a rectangle would be:
P= 2L+2W
L being the length and W being the width.
The problem says the length is 4cm more than the width, so L= 4+W.
So if we substitute L with 4+W, we get:
P= 2(4+W) + 2W
Use the Distributive Property
P= 8+2W+2W
Combine like terms
P=8+4W
Since we're given the perimeter, we could replace P with 52. So:
52=8+4W
Subtract 8 to both sides
44=4W
Divide 4 to both sides
11=W
Therefore, the width is 11cm
And since the length is 4cm more than the width, we could add 4cm to 11cm to find that the length is 15cm
Thus, the dimensions of the rectangle are 15cm by 11cm
El área de un cuadrado es igual a 8 veces la medida de su lado. ¿Cuánto mide por lado el cuadrado ?
El Area de un Cuadrado es : A = L²
L² = 8 x L -------------> L² / L = 8 ----------> L = 8
Cada lado mide 8 unidades.
2) El triple del área de un cuadrado menos seis veces la medida de su lado es igual a cero ¿Cuánto mide por lado el cuadrado?
El Area de un Cuadrado es : A = L²
(3 x L²) - 6 L = 0
Factorizando : 3L ( L - 2 ) = 0 --------> L = 0 ; L = 2
Cada lado mide 2 unidades.
I know that you should use PEMDAS, what grade are you in this sems advances for you