Answer:
The solution code is written in Python:
- def convertCSV(number_list):
- str_list = []
- for num in number_list:
- str_list.append(str(num))
-
- return ",".join(str_list)
- result = convertCSV([22,33,44])
- print(result)
Explanation:
Firstly, create a function "convertCSV" with one parameter "number_list". (Line 1)
Next, create an empty list and assign it to a new variable <em>str_list</em>. (Line 2)
Use for-loop to iterate through all the number in the <em>number_list</em>.(Line 4). Within the loop, each number is converted to a string using the Python built-in function <em>str() </em>and then use the list append method to add the string version of the number to <em>str_list</em>.
Use Python string<em> join() </em>method to join all the elements in the str_list as a single string. The "," is used as a separator between the elements (Line 7) . At the end return the string as an output.
We can test the function by calling the function and passing [22,33,34] as an argument and we shall see "22,33,44" is printed as an output. (Line 9 - 10)
B is the correct answe it will fail if more than 12.000
Hope this helps
:)
Answer:
A. Yes
B. Yes
Explanation:
We want to evaluate the validity of the given assertions.
1. The first statement is true
The sine rule stipulates that the ratio of a side and the sine of the angle facing the side is a constant for all sides of the triangle.
Hence, to use it, it’s either we have two sides and an angle and we are tasked with calculating the value of the non given side
Or
We have two angles and a side and we want to calculate the value of the side provided we have the angle facing this side in question.
For notation purposes;
We can express the it for a triangle having three sides a, b, c and angles A,B, C with each lower case letter being the side that faces its corresponding big letter angles
a/Sin A = b/Sin B = c/Sin C
2. The cosine rule looks like the Pythagoras’s theorem in notation but has a subtraction extension that multiplies two times the product of the other two sides and the cosine of the angle facing the side we want to calculate
So let’s say we want to calculate the side a in a triangle of sides a, b , c and we have the angle facing the side A
That would be;
a^2 = b^2 + c^2 -2bcCosA
So yes, the cosine rule can be used for the scenario above
Answer:
The correct approach will be "Polymer".
Explanation:
- A polymer, because it has a very broad molecular structure, seems to be a class or kind of organic solid. It is indeed a material consisting of long sequences, or monomers, of simplified components.
- The existence of a large number of monomers which have been mentioned several times seems to be the principal design characteristic of polymeric materials.