1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slavikrds [6]
3 years ago
14

The function below takes a single parameter, a list of numbers called number_list. Complete the function to return a string of t

he provided numbers as a series of comma separate values (CSV). For example, if the function was provided the argument [22, 33, 44], the function should return '22,33,44'. Hint: in order to use the join function you need to first convert the numbers into strings, which you can do by looping over the number list to create a new list (via append) of strings of each number.
Engineering
1 answer:
makkiz [27]3 years ago
6 0

Answer:

The solution code is written in Python:

  1. def convertCSV(number_list):
  2.    str_list = []
  3.    for num in number_list:
  4.        str_list.append(str(num))
  5.    
  6.    return ",".join(str_list)
  7. result = convertCSV([22,33,44])
  8. print(result)

Explanation:

Firstly, create a function "convertCSV" with one parameter "number_list". (Line 1)

Next, create an empty list and assign it to a new variable <em>str_list</em>. (Line 2)

Use for-loop to iterate through all the number in the <em>number_list</em>.(Line 4). Within the loop, each number is converted to a string using the Python built-in function <em>str() </em>and then use the list append method to add the string version of the number to <em>str_list</em>.

Use Python string<em> join() </em>method to join all the elements in the str_list as a single string. The "," is used as a separator between the elements (Line 7) . At the end return the string as an output.

We can test the function by calling the function and passing [22,33,34] as an argument and we shall see "22,33,44" is printed as an output. (Line 9 - 10)

You might be interested in
Define the Problem
gtnhenbr [62]

Answer:

rbrnrifnfnrfbdjrbfbfjrn

4 0
3 years ago
Why or why not the following materials will make good candidates for the construction of
zvonat [6]

Answer:

Answer explained below

Explanation:

3.] a] A turbine blade is the individual component which makes up the turbine section of a gas turbine. The blades are responsible for extracting energy from the high temperature, high pressure gas produced by the combustor.

The turbine blades are often the limiting component of gas turbines. To survive in this difficult environment, turbine blades often use exotic materials like superalloys and many different methods of cooling, such as internal air channels, boundary layer cooling, and thermal barrier coatings. The blade fatigue failure is one of the major source of outages in any steam turbines and gas turbines which is due to high dynamic stresses caused by blade vibration and resonance within the operating range of machinery.

To protect blades from these high dynamic stresses, friction dampers are used.

b] Thermal barrier coatings (TBC) are highly advanced materials systems usually applied to metallic surfaces, such as on gas turbine or aero-engine parts, operating at elevated temperatures, as a form ofexhaust heat management.

These 100μm to 2mm coatings serve to insulate components from large and prolonged heat loads by utilizing thermally insulating materials which can sustain an appreciable temperature difference between the load-bearing alloys and the coating surface.

In doing so, these coatings can allow for higher operating temperatures while limiting the thermal exposure of structural components, extending part life by reducing oxidation and thermal fatigue.

In conjunction with active film cooling, TBCs permit working fluid temperatures higher than the melting point of the metal airfoil in some turbine applications.

Due to increasing demand for higher engine operation (efficiency increases at higher temperatures), better durability/lifetime, and thinner coatings to reduce parasitic weight for rotating/moving components, there is great motivation to develop new and advanced TBCs.

3 0
3 years ago
The present worth of income from an investment that follows an arithmetic gradient is projected to be $475,000. The income in ye
Nikitich [7]

Answer:

G = $37,805.65

Explanation:

I found this on another site:

475,000 = 25,000(P/A,10%,6) + G(P/G,10%,6)

475,000 = 25,000(4.3553) + G(9.6842)

9.6842G = 366,117.50

G = $37,805.65

4 0
3 years ago
(35-39) A student travels on a school bus in the middle of winter from home to school. The school bus temperature is 68.0° F. Th
arlik [135]

Answer:

The net energy transfer from the student's body during the 20-min ride to school is 139.164 BTU.

Explanation:

From Heat Transfer we determine that heat transfer rate due to electromagnetic radiation (\dot Q), measured in BTU per hour, is represented by this formula:

\dot Q = \epsilon\cdot A\cdot \sigma \cdot (T_{s}^{4}-T_{b}^{4}) (1)

Where:

\epsilon - Emissivity, dimensionless.

A - Surface area of the student, measured in square feet.

\sigma - Stefan-Boltzmann constant, measured in BTU per hour-square feet-quartic Rankine.

T_{s} - Temperature of the student, measured in Rankine.

T_{b} - Temperature of the bus, measured in Rankine.

If we know that \epsilon = 0.90, A = 16.188\,ft^{2}, \sigma = 1.714\times 10^{-9}\,\frac{BTU}{h\cdot ft^{2}\cdot R^{4}}, T_{s} = 554.07\,R and T_{b} = 527.67\,R, then the heat transfer rate due to electromagnetic radiation is:

\dot Q = (0.90)\cdot (16.188\,ft^{2})\cdot \left(1.714\times 10^{-9}\,\frac{BTU}{h\cdot ft^{2}\cdot R^{4}} \right)\cdot [(554.07\,R)^{4}-(527.67\,R)^{4}]

\dot Q = 417.492\,\frac{BTU}{h}

Under the consideration of steady heat transfer we find that the net energy transfer from the student's body during the 20 min-ride to school is:

Q = \dot Q \cdot \Delta t (2)

Where \Delta t is the heat transfer time, measured in hours.

If we know that \dot Q = 417.492\,\frac{BTU}{h} and \Delta t = \frac{1}{3}\,h, then the net energy transfer is:

Q = \left(417.492\,\frac{BTU}{h} \right)\cdot \left(\frac{1}{3}\,h \right)

Q = 139.164\,BTU

The net energy transfer from the student's body during the 20-min ride to school is 139.164 BTU.

7 0
2 years ago
Sometimes, steel studs may not be used on outside walls because they are?
Helen [10]

Answer:

We can describe 15×-10 as an expression. we would describe 6×-2< 35 as an...

Explanation:

We can describe 15×-10 as an expression. we would describe 6×-2< 35 as an...

6 0
3 years ago
Other questions:
  • A bar of steel has the minimum properties Se = 40 kpsi, Sy = 60 kpsi, and Sut = 80 kpsi. The bar is subjected to a steady torsio
    7·1 answer
  • Using Von Karman momentum integral equation, find the boundary layer thickness, the displacement thickness, the momentum thickne
    14·1 answer
  • why HF (hydrogen fluoride) has higher boiling temperature than HCl (hydrogen chloride), even thought HF has lower molecular weig
    8·1 answer
  • 21.13 The index of refraction of corundum (Al2O3) is anisotropic. Suppose that visible light is passing from one grain to anothe
    5·1 answer
  • 1. A fixed-geometry supersonic inlet starts at a Mach number of 3. After starting, the cruise Mach number is 2, and the operatin
    13·1 answer
  • Technician A says that latent heat is hidden heat and cannot be measured on a thermometer. Technician B says that latent heat is
    12·1 answer
  • Estimate the time it would take for such axons to carry a message from a foot stepping on a sharp object to the brain and then b
    14·1 answer
  • Water is contained in a rigid vessel of 5 m3 at a quality of 0.8 and a pressure of 1 MPa. If the pressure is reduced to 270.3 kP
    9·1 answer
  • How many millimeters are there in a centimeter?
    10·1 answer
  • Imagine the arc of a football as it flies through the air. How does this motion illustrate classical mechanics?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!