The lines have equal gradients;
m

Equation of line 2;
y=mx+c
y=

x+c
-15=

+c
c=-11
y=4/5x-11
Answer:
![\left[\begin{array}{cc}3&9\\5&-2\end{array}\right] +\left[\begin{array}{cc}6&0\\-8&4\end{array}\right]=\left[\begin{array}{cc}9&9\\-3&2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%269%5C%5C5%26-2%5Cend%7Barray%7D%5Cright%5D%20%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%260%5C%5C-8%264%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D9%269%5C%5C-3%262%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
To add matrices, we add the corresponding components.
The given matrices is
![\left[\begin{array}{cc}3&9\\5&-2\end{array}\right] +\left[\begin{array}{cc}6&0\\-8&4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%269%5C%5C5%26-2%5Cend%7Barray%7D%5Cright%5D%20%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%260%5C%5C-8%264%5Cend%7Barray%7D%5Cright%5D)
We add the corresponding components to get;
![\left[\begin{array}{cc}3&9\\5&-2\end{array}\right] +\left[\begin{array}{cc}6&0\\-8&4\end{array}\right]=\left[\begin{array}{cc}3+6&9+0\\5+-8&-2+4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%269%5C%5C5%26-2%5Cend%7Barray%7D%5Cright%5D%20%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%260%5C%5C-8%264%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%2B6%269%2B0%5C%5C5%2B-8%26-2%2B4%5Cend%7Barray%7D%5Cright%5D)
We simplify to get:
![\left[\begin{array}{cc}3&9\\5&-2\end{array}\right] +\left[\begin{array}{cc}6&0\\-8&4\end{array}\right]=\left[\begin{array}{cc}9&9\\-3&2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%269%5C%5C5%26-2%5Cend%7Barray%7D%5Cright%5D%20%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%260%5C%5C-8%264%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D9%269%5C%5C-3%262%5Cend%7Barray%7D%5Cright%5D)
Steps to solve:
g(x) = – x^2 + 4x + 3 when g(-3).
~Substitute x with -3.
g(-3) = -(-3)^2 + 4(-3) + 3
~Simplify
g(-3) = -9 - 12 + 3
~Simplify using PEMDAS
g(-3) = -18
Best of Luck!
The maximum speed of a boat at 30 feet length of water is 0.093 nautical miles/hour or knots.
<u>Step-by-step explanation:</u>
- The equation for the maximum speed, s is given by s²= (16/9)x
- where, x is the length of the water line in feet.
It is given that, the modeled equation s²= (16/9)x is used to find the maximum speed in knots or nautical miles per hour.
The question is asked to find the maximum speed when the length of the water is 30 feet.
Therefore, to find the maximum speed in 30 feet water, the given modeled equation is used. So, substitute the 30 feet in place of x.
<u>Now, calculating the maximum speed :</u>
s² = (16/9)(30)
s² = 480 / 9
s² = 53.3
Taking square root on both sides,
s = √53.3
s = 7.3
The maximum speed of a boat at 30 feet length of water is 7.3 nautical miles/hour or knots.
Answer:
a) 3C1 * 12 C1 / 15 C2
b) 1 - 12C2 / 15C2
Step-by-step explanation:
Được
Viên bi đỏ = 3
Viên bi trắng = 5
Viên bi xanh = 7
Hai quả bóng được rút ra một cách ngẫu nhiên
a) Có 1 bi đỏ
3C1 * 12 C1 / 15 C2
b) Có ít nhất 1 viên bi đỏ trong số 2 viên lấy ra.
Số kết quả của việc chọn hai quả bóng trong số 15 quả bóng = 15 C2
Số kết quả của việc chọn 0 quả bóng đỏ = 15C12
Xác suất chọn được ít nhất 1 viên bi đỏ = 1 - 12C2 / 15C2