Answer:
Explanation:
As a result of the codes used to making this solved, i was unable to upload my answer, therefore i'm sending a screenshot of the codes.
thank you for your understanding,
cheers i hope this helps
The spacing between sidebands is equal to 6 kHz.
<u>Given the following data:</u>
- Modulating signal = 3 kHz.
- Carrier frequency = 36 MHz.
<h3>What is a sideband?</h3>
A sideband can be defined as a band of frequencies that are lower or higher than the carrier frequency due to the modulation process. Thus, it will either be lower than or higher than the carrier frequency.
Generally, the frequency of the modulating signal is equal to the spacing between the sidebands. Therefore, a modulating signal of 3 kHz simply means that the lower sideband is <u>3 kHz</u> higher while the upper sideband is <u>3 kHz</u> lower.
Spacing = 3 kHz + 3 kHz = 6 kHz.
Read more on frequency here: brainly.com/question/3841958
Answer: An electric power system is a network of electrical components deployed to supply, transfer, and use electric power.
Explanation:
Answer:
The displacement from t = 0 to t = 10 s, is -880 m
Distance is 912 m
Explanation:
. . . . . . . . . . A
integrate above equation we get

from information given in the question we have
t = 1 s, s = -10 m
so distance s will be
-10 = 12 - 1 + C,
C = -21

we know that acceleration is given as
[FROM EQUATION A]
Acceleration at t = 4 s, a(4) = -24 m/s^2
for the displacement from t = 0 to t = 10 s,

the distance the particle travels during this time period:
let v = 0,

t = 2 s
Distance ![= [s(2) - s(0)] + [s(2) - s(10)] = [1\times 2 - 2^3] + [(12\times 2 - 2^3) - (12\times 10 - 10^3)] = 912 m](https://tex.z-dn.net/?f=%3D%20%5Bs%282%29%20-%20s%280%29%5D%20%2B%20%5Bs%282%29%20-%20s%2810%29%5D%20%3D%20%5B1%5Ctimes%202%20-%202%5E3%5D%20%2B%20%5B%2812%5Ctimes%202%20-%202%5E3%29%20-%20%2812%5Ctimes%2010%20-%2010%5E3%29%5D%20%3D%20912%20m)