Answer:
second-law efficiency = 62.42 %
Explanation:
given data
temperature T1 = 1200°C = 1473 K
temperature T2 = 20°C = 293 K
thermal efficiency η = 50 percent
solution
as we know that thermal efficiency of reversible heat engine between same temp reservoir
so here
efficiency ( reversible ) η1 = 1 -
............1
efficiency ( reversible ) η1 = 1 -
so efficiency ( reversible ) η1 = 0.801
so here second-law efficiency of this power plant is
second-law efficiency =
second-law efficiency =
second-law efficiency = 62.42 %
Answer:
(a). the resultant force in the direction of the freestream velocity is termed the drag and the resultant force normal to the freestream velocity is termed the lift
Explanation:
When a fluid flows around the surface of an object, it exerts a force on it. This force has two components, namely lift and drag.
The component of this force that is perpendicular (normal) to the freestream velocity is known as lift, while the component of this force that is parallel or in the direction of the fluid freestream flow is known as drag.
Lift is as a result of pressure differences, while drag results from forces due to pressure distributions over the object surface, and forces due to skin friction or viscous force.
Thus, drag results from the combination of pressure and viscous forces while lift results only from the<em> pressure differences</em> (not pressure forces as was used in option D).
The only correct option left is "A"
(a). the resultant force in the direction of the freestream velocity is termed the drag and the resultant force normal to the freestream velocity is termed the lift
Answer:
maneuverability
Explanation:
needless to say, I took the quiz
Answer:
I would say false but I am not for sure