Answer:
First, let's determine how many moles of oxygen we have.
Atomic weight oxygen = 15.999
Molar mass O2 = 2*15.999 = 31.998 g/mol
We have 3 drops at 0.050 ml each for a total volume of 3*0.050ml = 0.150 ml
Since the density is 1.149 g/mol,
we have 1.149 g/ml * 0.150 ml = 0.17235 g of O2
Divide the number of grams by the molar mass to get the number of moles 0.17235 g / 31.998 g/mol = 0.005386274 mol
Now we can use the ideal gas law. The equation PV = nRT where P = pressure (1.0 atm) V = volume n = number of moles (0.005386274 mol) R = ideal gas constant (0.082057338 L*atm/(K*mol) ) T = Absolute temperature ( 30 + 273.15 = 303.15 K)
Now take the formula and solve for V, then substitute the known values and solve.
PV = nRT V = nRT/P V = 0.005386274 mol * 0.082057338 L*atm/(K*mol) * 303.15 K / 1.0 atm V = 0.000441983 L*atm/(K*) * 303.15 K / 1.0 atm V = 0.133987239 L*atm / 1.0 atm V = 0.133987239 L
So the volume (rounded to 3 significant figures) will be 134 ml.
Answer
2.7956 * 10^19 photons
Givens
- Wavelength = λ = 525 * 10^-9 meters [1 nmeter = 1*10^-9 meters]
- c = 3 * 10^8 meters
- E = ???
- W = 100 watts
- t = 1 second
- h= plank's Constant = 6.26 * 10^-34 J*s
Formula
E = h * c / λ
W = E / t
Solution
E = 6.26 * 10^-34 j*s * 3 * 10^8 m/s /525 * 10^-9 (m)
The meters cancel out. So do the seconds. You are left with Joules as you should be.
E = 3.577 * 10^-18 Joules
What you have found is the energy of 1 photon.
Now you have to find the Joules from the watts.
W = E/t
100 * 1 second = 100 joules
1 photon contains 3.577 * 10 ^ - 18 Joules
x photon = 100 joules
1/x = 3.577 * 10^-18 / 100 Cross multiply
100 = 3.577 * 10 ^ - 18 * x Divide both sides by 3.577 * 10 ^ - 18
100/3.577 * 10 ^ - 18 = 3.577 * 10 ^ - 18x / 3.577 * 10 ^ - 18
2.7956 * 10^19 photons = x
You can tell that the atom is in the excited state because:
- Electron configuration should follow the 2-8-8-2 rule, meaning that the inner shell should be filled before the next shell can start holding electrons.
- Instead of the atom's electron configuration being in the ground state at 2-8-8-1, electrons from the second shell have jumped to the third.
Answer:
Explanation: Volume versus Temperature: Raising the temperature of a gas increases the average kinetic energy and therefore the rms speed (and the average speed) of the gas molecules. Hence as the temperature increases, the molecules collide with the walls of their containers more frequently and with greater force.