I am not sure if you have any choices. Here are some options:
0.17333333333
This is also notated by .1733 with a line over the top of the two 3's indicating that these number continue repeating.
Other choices depending on your instructions...
.173 (if rounded to thousanths)
.17 (if rounded to hundreths)
.2 (if rounded to tenths)
Do 142degrees subtract that by 180 that is the angle on the other side then put that answer plus 49 equal to 180 then there is your answer
Hey, using y2-y1/x2-x1 you know that slope has to be -1/4
Answer:


![V(X) = E(X^2)-[E(X)]^2=349.2-(18.6)^2=3.24](https://tex.z-dn.net/?f=V%28X%29%20%3D%20E%28X%5E2%29-%5BE%28X%29%5D%5E2%3D349.2-%2818.6%29%5E2%3D3.24)
The expected price paid by the next customer to buy a freezer is $466
Step-by-step explanation:
From the information given we know the probability mass function (pmf) of random variable X.

<em>Point a:</em>
- The Expected value or the mean value of X with set of possible values D, denoted by <em>E(X)</em> or <em>μ </em>is

Therefore

- If the random variable X has a set of possible values D and a probability mass function, then the expected value of any function h(X), denoted by <em>E[h(X)]</em> is computed by
![E[h(X)] = $\sum_{D} h(x)\cdot p(x)](https://tex.z-dn.net/?f=E%5Bh%28X%29%5D%20%3D%20%24%5Csum_%7BD%7D%20h%28x%29%5Ccdot%20p%28x%29)
So
and
![E[h(X)] = $\sum_{D} h(x)\cdot p(x)\\E[X^2]=$\sum_{D}x^2\cdot p(x)\\ E(X^2)=16^2\cdot 0.3+18^2\cdot 0.1+20^2\cdot 0.6\\E(X^2)=349.2](https://tex.z-dn.net/?f=E%5Bh%28X%29%5D%20%3D%20%24%5Csum_%7BD%7D%20h%28x%29%5Ccdot%20p%28x%29%5C%5CE%5BX%5E2%5D%3D%24%5Csum_%7BD%7Dx%5E2%5Ccdot%20p%28x%29%5C%5C%20E%28X%5E2%29%3D16%5E2%5Ccdot%200.3%2B18%5E2%5Ccdot%200.1%2B20%5E2%5Ccdot%200.6%5C%5CE%28X%5E2%29%3D349.2)
- The variance of X, denoted by V(X), is
![V(X) = $\sum_{D}E[(X-\mu)^2]=E(X^2)-[E(X)]^2](https://tex.z-dn.net/?f=V%28X%29%20%3D%20%24%5Csum_%7BD%7DE%5B%28X-%5Cmu%29%5E2%5D%3DE%28X%5E2%29-%5BE%28X%29%5D%5E2)
Therefore
![V(X) = E(X^2)-[E(X)]^2\\V(X)=349.2-(18.6)^2\\V(X)=3.24](https://tex.z-dn.net/?f=V%28X%29%20%3D%20E%28X%5E2%29-%5BE%28X%29%5D%5E2%5C%5CV%28X%29%3D349.2-%2818.6%29%5E2%5C%5CV%28X%29%3D3.24)
<em>Point b:</em>
We know that the price of a freezer having capacity X is 60X − 650, to find the expected price paid by the next customer to buy a freezer you need to:
From the rules of expected value this proposition is true:
We have a = 60, b = -650, and <em>E(X)</em> = 18.6. Therefore
The expected price paid by the next customer is

More than one unique triangle. All triangles are equal to 180, so a triangle with these measures CAN exist. It can also exist in multiple sizes.