or √x = (√2 ± i√2)/2 or (1 ± i)/√2 [by cancelling the √2 in numerator and denominator and ‘i' is a imaginary number with value √(-1)]
or x = [(1 ± i)²]/2
So roots are [(1+i)²]/2 and [(1 - i)²]/2
Thus we got two roots but in complex plane. If you put this values in the formula for formation of quadratic equation, that is x²+(a+b)x - ab where a and b are roots of the equation, you will get the equation