Answer:

mass = 3.645 g
volume = 9×9×9
= 729 cm³
density = 3.645/729
= 0.005 gcm^-3
Step-by-step explanation:
the volume is 729 cm³ cause the given height is 9cm and it is a cube. cube has equal sides so their lengths are the same.
volume = length × height × width
8 units that Is the answer
Answer:

Step-by-step explanation:
Each vertical asymptote corresponds to a zero in the denominator. When the function does not change sign from one side of the asymptote to the other, the factor has even degree. The vertical asymptote at x=-4 corresponds to a denominator factor of (x+4). The one at x=2 corresponds to a denominator factor of (x-2)², because the function does not change sign there.
__
Each zero corresponds to a numerator factor that is zero at that point. Again, if the sign doesn't change either side of that zero, then the factor has even multiplicity. The zero at x=1 corresponds to a numerator factor of (x-1)².
__
Each "hole" in the function corresponds to numerator and denominator factors that are equal and both zero at that point. The hole at x=-3 corresponds to numerator and denominator factors of (x-3).
__
Taken altogether, these factors give us the function ...

X = 0.72423357
"Create equivalent expressions in the equation that all have equal bases, then solve for x"
By the chain rule,

which follows from
.
is then a function of
; denote this function by
. Then by the product rule,
![\dfrac{\mathrm d^2y}{\mathrm dx^2}=\dfrac{\mathrm d}{\mathrm dx}\left[\dfrac1x\dfrac{\mathrm dy}{\mathrm dt}\right]=-\dfrac1{x^2}\dfrac{\mathrm dy}{\mathrm dt}+\dfrac1x\dfrac{\mathrm df}{\mathrm dx}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%5E2y%7D%7B%5Cmathrm%20dx%5E2%7D%3D%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cleft%5B%5Cdfrac1x%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dt%7D%5Cright%5D%3D-%5Cdfrac1%7Bx%5E2%7D%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dt%7D%2B%5Cdfrac1x%5Cdfrac%7B%5Cmathrm%20df%7D%7B%5Cmathrm%20dx%7D)
and by the chain rule,

so that

Then the ODE in terms of
is

The characteristic equation

has two roots at
and
, so the characteristic solution is

Solving in terms of
gives
