Currency such as dollars can come in various forms such as dimes, quarters, pennies, and nickels.
The number of quarter coins is 12 and the number of dollar coins is 14 coins.
Let's represent:
The number of 1 dollar coin = d
The number of 1 quarter coin = q
The twenty-six coins in my pocket are all dollar coins and quarters. The algebraic equation for this statement above is =
d + q = 26 ........ Equation 1
Making d the subject of the formula
d = 26 - q
1 dollar coin = $1
1 quarter = $0.25
The value of the dollar and nickel coins is seventeen dollars. The algebraic expression for this statement is :
$1 x d + $0.25 x q = 17
d + 0.25q = 17.................Equation 2
Substitute 26 - q for d in Equation 2
26 - q + 0.25q = 17
Collecting like terms
26 - 17 = q - 0.25q
9 = 0.75q
Divide both sides by 0.75
9/0.75 = 0.75q/0.75
q = 12 coins
Solving for number of dollar coins
d = 26 - q
q = 12
d = 26 - 12
d = 14 coins
Therefore, the number of quarter coins is 12 and the number of dollar coins is 14 coins.
To learn more, visit the link below:
brainly.com/question/22799498
Answer:
216 sq m
Step-by-step explanation:
Surface area of triangular prism = bh + (s1 + s2 + s3)*L
Where,
b = 6 m
h = 8 m
s1 = 10 m
s2 = 8 m
s3 = 6 m
L = 7 m
Plug in the values
Surface area = 6*8 + (10 + 8 + 6)*7
Surface Area = 48 + 24*7 = 216 m²
remember that when total value is used a negative number is turned positive so it equals to 282 feet
Answer:
<em>Answer</em><em> </em><em>is</em><em> </em><em>none</em><em> </em><em>of</em><em> </em><em>these</em><em>.</em>
<em>Answer</em><em> </em><em>is given below with explanations</em><em>. </em>
Step-by-step explanation:
<em>Given</em><em> </em><em>that</em><em> </em><em>x</em><em> </em><em>=</em><em> </em><em>-2</em><em>.</em><em>5</em>
<em>To</em><em> </em><em>find</em><em> </em><em>the</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>x</em><em>+</em><em>13</em>
<em>Ob</em><em> </em><em>substituting</em><em> </em><em>the</em><em> </em><em>value</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>given equation</em><em> </em>
<em>we</em><em> </em><em>get</em><em> </em>
<em>=</em><em> </em><em>-2</em><em>.</em><em>5</em><em>+</em><em>13</em>
<em>=</em><em> </em><em>13</em><em> </em><em>-</em><em> </em><em>2</em><em>.</em><em>5</em><em> </em><em> </em><em> </em><em> </em><em>(</em><em>we</em><em> </em><em>can</em><em> </em><em>also</em><em> </em><em>write</em><em> </em><em>like</em><em> </em><em>this</em><em>)</em>
<em>=</em><em> </em><em>10</em><em>.</em><em>5</em>
<em>Therefore</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>x</em><em> </em><em>+</em><em>13</em><em> </em><em>is</em><em> </em><em>10</em><em>.</em><em>5</em>
<em>HAVE</em><em> </em><em>A NICE DAY</em><em>!</em>
<em>THANKS FOR GIVING ME THE OPPORTUNITY</em><em> </em><em>TO ANSWER YOUR QUESTION</em><em>. </em>
Answer:
(1) How many equilateral triangles are there? ___6__
(2) What is the measure of each of the three angles in the equilateral triangle? __60°_
(3) If we cut an equilateral triangle down the middle (green line), what special right triangle do you create? _30-60-90_
(4) What is the vocabulary word for the green line? _Perpendicular bisector_
(5) What is the length of the short side of one 30-60-90 triangle? __4_cm_
(6) What is the length of the hypotenuse of one 30-60-90 triangle? __8 cm
(7) Using the properties of 30-60-90 triangles, calculate the length of the long leg. _4√3_cm
(8) What is the height of the equilateral triangle? _4√3_cm
(9) Apply the formula for the area of a triangle to find the area of one equilateral triangle. ½(8)(4√3) = 16√3 cm²
(10) Calculate the area of the complete hexagon by multiplying the area of one equilateral triangle by the number of triangles. _8(16√3) = 128√3 cm²_
Step-by-step explanation: