<h3>
Answer:</h3>
- left picture (bottom expression): -cot(x)
- right picture (top expression): tan(x)
<h3>
Step-by-step explanation:</h3>
A graphing calculator can show you a graph of each expression, which you can compare to the offered choices.
_____
You can make use of the relations ...
... sin(a)+sin(b) = 2sin((a+b)/2)cos((a-b)/2)
... cos(a)+cos(b) = 2cos((a+b)/2)cos((a-b)/2)
... cos(a)-cos(b) = -2sin((a+b)/2)sin((a-b)/2)
Then you have ...

and ...

Answer:
y=
Step-by-step explanation:
I used an online graphing calculator and process of elimination...
The answer would be 45. Thank you very much and good luck on there!
Answer:
3+2c
Step-by-step explanation:
To translate the phrase into an algebraic expression, you have to analyze the information provided. Three dollars more than twice the cost of a bowl of soups means that given that c is the costs of a bowl of soup, you have to multiply c for 2 as the phrase says twice the cost. Also, it says three dollars more which means that you have to add 3. According to this, the expression is: 3+2c.
Hello there! I can help you! The formula for compound interest is P(1 + r)^t, where P= principal (initial amount), r = interest rate (in decimal form), and t = time (in years). Let's do this step by step. First off, we add the rate into 1. 4% is the interest rate (0.04 in decimal form). 1 + 0.04 is 1.04. Now, what we will do is raise that number to the 2nd power, because the time that elapses is 2 years. 1.04² is 1.0816. That's that. Now, multiply 7,500 to find the total amount of money. 1.0816 * 7,500 is 8,112. There. Toby's savings account balance in 2 years is £8,112.
Note: To solve for compound interest questions like it, add 1 to the percentage rate in decimal form, raise that number to a power based on the number of years (for example, raise the number to the 7th power if we are looking for the balance after 7 years), and then multiply that number by the starting amount. After you raise the number by a power, there may be a lot of numbers behind it. Whatever you do, DO NOT delete the number. Keep it there and multiply it by the principal.