well, if that function f(x) were to be continuos on all subfunctions, that means that whatever value 7x + k has when x = 2, meets or matches the value that kx² - 6 has when x = 2 as well, so then 7x + k = kx² - 6 when f(2)
![f(x)= \begin{cases} 7x+k,&x\leqslant 2\\ kx^2-6&x > 2 \end{cases}\qquad \qquad f(2)= \begin{cases} 7(2)+k,&x\leqslant 2\\ k(2)^2-6&x > 2 \end{cases} \\\\[-0.35em] ~\dotfill\\\\ 7(2)+k~~ = ~~k(2)^2-6\implies 14+k~~ = ~~4k-6 \\\\\\ 14~~ = ~~3k-6\implies 20~~ = ~~3k\implies \cfrac{20}{3}=k](https://tex.z-dn.net/?f=f%28x%29%3D%20%5Cbegin%7Bcases%7D%207x%2Bk%2C%26x%5Cleqslant%202%5C%5C%20kx%5E2-6%26x%20%3E%202%20%5Cend%7Bcases%7D%5Cqquad%20%5Cqquad%20f%282%29%3D%20%5Cbegin%7Bcases%7D%207%282%29%2Bk%2C%26x%5Cleqslant%202%5C%5C%20k%282%29%5E2-6%26x%20%3E%202%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%207%282%29%2Bk~~%20%3D%20~~k%282%29%5E2-6%5Cimplies%2014%2Bk~~%20%3D%20~~4k-6%20%5C%5C%5C%5C%5C%5C%2014~~%20%3D%20~~3k-6%5Cimplies%2020~~%20%3D%20~~3k%5Cimplies%20%5Ccfrac%7B20%7D%7B3%7D%3Dk)
Answer: Degree of polynomial (highest degree) =4
Maximum possible terms =9
Number of terms in the product = 5
Step-by-step explanation:
A trinomial is a polynomial with 3 terms.
The given product of trinomial: 
By using distributive property: a(b+c+d)= ab+ac+ad

Maximum possible terms =9
Combine like terms

Hence, 
Degree of polynomial (highest degree) =4
Number of terms = 5
Answer:
Below in bold.
Step-by-step explanation:
Area of a kite = 1/2 * D1 * D2 were D1 and D2 are the 2 diagonals
D1 = 5 + 2.5 = 7.5 and D2 = 2*44444.5 = 9
So area = 1/2 * 7.5 * 9
= 33.75.
Answer: 30.48
Step-by-step explanation:
Sum the series of 30.48 + (1/2)(30.48)+ (1/4)(30.48)+(1/8)(30.48)+(1/16)(30.48)+(1/32)(30.48)
Or use an Excel spreadsheet
Answer:
Step-by-step explanation:
(–1)8 + (–1)7 + –16 + –14 – (–1)2 = -8 -7 -16 -14 +2 = -45+2 = - 43