To get the midsegment, namely HN, well, we need H and N
hmm so.... notice the picture you have there, is just an "isosceles trapezoid", namely, it has two equal sides, the left and right one, namely JL and KM
the midpoint of JL is H and the midpoint of KM is N
thus


![\bf \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) K&({{ 4q}}\quad ,&{{ 4n}})\quad % (c,d) M&({{ 4p}}\quad ,&{{ 0}}) \end{array}\qquad % coordinates of midpoint \left(\cfrac{4p+4q}{2}\quad ,\quad \cfrac{0+4n}{2} \right) \\\\\\ \left( \cfrac{2(2p+2q)}{2},\cfrac{4n}{2} \right)\implies \boxed{[(2p+2q), 2n]\impliedby N}\\\\ -----------------------------\\\\](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7Blllll%7D%0A%26x_1%26y_1%26x_2%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0AK%26%28%7B%7B%204q%7D%7D%5Cquad%20%2C%26%7B%7B%204n%7D%7D%29%5Cquad%20%0A%25%20%20%28c%2Cd%29%0AM%26%28%7B%7B%204p%7D%7D%5Cquad%20%2C%26%7B%7B%200%7D%7D%29%0A%5Cend%7Barray%7D%5Cqquad%0A%25%20%20%20coordinates%20of%20midpoint%20%0A%5Cleft%28%5Ccfrac%7B4p%2B4q%7D%7B2%7D%5Cquad%20%2C%5Cquad%20%5Ccfrac%7B0%2B4n%7D%7B2%7D%20%5Cright%29%0A%5C%5C%5C%5C%5C%5C%0A%5Cleft%28%20%5Ccfrac%7B2%282p%2B2q%29%7D%7B2%7D%2C%5Ccfrac%7B4n%7D%7B2%7D%20%5Cright%29%5Cimplies%20%5Cboxed%7B%5B%282p%2B2q%29%2C%202n%5D%5Cimpliedby%20N%7D%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C)
A.)))))))))))
- Harvard university professor
The length of the line segment using the percentage are as follows:
25% length = 1 cm
50% length = 2cm
100% length = 4 cm
75% length = 3 cm
<h3>How to find length with the percentage?</h3>
The line segment 8 cm is 200% . This means it is double of 100%.
Therefore the length can be calculated using the percentage as follows;
100% length = 8 / 2 = 4 cm
Hence,
75% length = 75 / 100 × 4 = 3 cm
Hence,
25% length = 25 / 100 × 4 = 1 cm
50% length = 50 / 100 × 4 = 2cm
learn more on percentage here: brainly.com/question/13150107
#SPJ1
Answer:
0.008333 Servings per Calorie
Step-by-step explanation: