Answer:
The margin of error for the 99% confidence level for this sample is ±2.23.
None of the given figures is close to the answer:
E. None of the above
Step-by-step explanation:
margin of error (ME) around the mean can be calculated using the formula
ME=
where
- z is the corresponding statistic of the 99% confidence level (2.576)
- s is the population IQ standard deviation (15)
- N is the sample size (300)
Using these numbers we get:
ME=
≈ 2.23
Answer:
b. 4
Step-by-step explanation:
Answer:
spark addition is a left to right addition
Answer:
(x, y) = (77/240, -3/10)
Step-by-step explanation:
It is convenient to write the equations in standard form.
Multiplying the first equation by 21 gives ...
21y = 24x -14
Multiplying the second equation by 8 gives ...
24x +9y = 5
Then the system of equations in standard form is ...
Subtracting the first from the second, we get ...
(24x +9y) -(24x -21y) = (5) -(14)
30y = -9
y = -9/30 = -3/10
Substituting this into the second equation, we have ...
24x +9(-3/10) = 5
24x = 7.7 . . . . . . . add 27/10
x = 7.7/24 = 77/240
The solution is (x, y) = (77/240, -3/10).
Answer:
The probability that none of the LED light bulbs are defective is 0.7374.
Step-by-step explanation:
The complete question is:
What is the probability that none of the LED light bulbs are defective?
Solution:
Let the random variable <em>X</em> represent the number of defective LED light bulbs.
The probability of a LED light bulb being defective is, P (X) = <em>p</em> = 0.03.
A random sample of <em>n</em> = 10 LED light bulbs is selected.
The event of a specific LED light bulb being defective is independent of the other bulbs.
The random variable <em>X</em> thus follows a Binomial distribution with parameters <em>n</em> = 10 and <em>p</em> = 0.03.
The probability mass function of <em>X</em> is:

Compute the probability that none of the LED light bulbs are defective as follows:


Thus, the probability that none of the LED light bulbs are defective is 0.7374.