Answer:
The margin of error for the 95% confidence interval for the mean score of all such subjects is of 8.45.
Step-by-step explanation:
We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 27 - 1 = 26
95% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 26 degrees of freedom(y-axis) and a confidence level of
. So we have T = 2.0518
The margin of error is:

In which s is the standard deviation of the sample and n is the size of the sample.
In this question:
. So


The margin of error for the 95% confidence interval for the mean score of all such subjects is of 8.45.
Well Those are variables and it is using the Distributive property to solve. For example P(a+b) simplify P*a + P*b.
Answer:
0.5981 = 59.81% probability that three or less of the selected adults have saved nothing for retirement
Step-by-step explanation:
For each adult, there are only two possible outcomes. Either they save nothing for retirement, or they save something. The probability of an adult saving nothing for retirement is independent of any other adult. This means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
20% of adults in the United States save nothing for retirement (CNBC website).
This means that 
Suppose that sixteen adults in the United States are selected randomly.
This means that 
What is the probability that three or less of the selected adults have saved nothing for retirement?
This is:

In which






0.5981 = 59.81% probability that three or less of the selected adults have saved nothing for retirement
Answer:
For the perfect square trinomial (quadratic) i.e.
, the constant term (last term) is positive.
Step-by-step explanation:
"Perfect square trinomials" are termed as the quadratics that are the outcomes of squaring binomials.
For example:





Therefore, for the perfect square trinomial (quadratic) i.e.
, the constant term (last term) is positive.