1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
melomori [17]
2 years ago
6

Jimmy is comparing prices of bottled drinks. He finds one bottle of water that costs $1.65 and contains 11 ounces. He then finds

one bottle of soda that costs $2.52 and contains 14 ounces. Which bottle costs less per ounce?
Mathematics
1 answer:
Naily [24]2 years ago
6 0

Answer:

The bottle that costs less per ounce is the 11 ounce

Step-by-step explanation:

First you have to divide each ounce by the cost to find out how much each ounce costs.

1.65 divided by 11 is 0.15 and 2.52 divided by 14 is 0.18.

Hope this helps!

You might be interested in
Which of the following statement(S) are true of the discriminant?
lana [24]

Hello from MrBillDoesMath!

Answer:    A, C, D

Discussion:

The solution of the quadratic equation  ax^2 + bx + c = 0  is


x =        ( -b  +\-   (b^2 - 4ac) ^ (1/2) ) /2a


The expression b^2 - 4ac is called the discriminant, occurs in the numerator of the solution,  and also occurs inside a square root (called a radicand).

The question, while intelligible, should be stated more clearly.  

Regards, MrB

5 0
2 years ago
Read 2 more answers
COMPUTE<br><br> 3 ( 2 1/2 - 1 ) + 3/10
Juli2301 [7.4K]

Answer:

<h3>\boxed{ \frac{24}{5} }</h3>

Step-by-step explanation:

\mathsf{3(2 \frac{1}{2}  - 1) +  \frac{3}{10} }

Convert mixed number to improper fraction

\mathrm{3( \frac{5}{2}  - 1) +  \frac{3}{10} }

Calculate the difference

⇒\mathrm{3( \frac{5 \times 1}{2 \times 1} -  \frac{1 \times 2}{1 \times 2}  }) +  \frac{3}{10}

⇒\mathrm{ 3 \times( \frac{5}{2}  -  \frac{2}{2}) } +  \frac{3}{10}

⇒\mathrm{3 \times ( \frac{5 - 2}{2} ) +  \frac{3}{10} }

⇒\mathrm{3 \times  \frac{3}{2}  +  \frac{3}{10} }

Calculate the product

⇒\mathrm{ \frac{3 \times 3}{1 \times 2}  +  \frac{3}{10} }

⇒\mathrm{ \frac{9}{2}  +  \frac{3}{10}}

Add the fractions

⇒\mathsf{ \frac{9  \times 5}{2 \times 5}  +  \frac{3 \times 1}{10 \times 1} }

⇒\mathrm{ \frac{45}{10}  +  \frac{3}{10} }

⇒\mathrm{ \frac{45 + 3}{10 } }

⇒\mathrm{ \frac{48}{10} }

Reduce the numerator and denominator by 2

⇒\mathrm{ \frac{24}{5} }

Further more explanation:

<u>Addition </u><u>and </u><u>Subtraction</u><u> </u><u>of </u><u>like </u><u>fractions</u>

While performing the addition and subtraction of like fractions, you just have to add or subtract the numerator respectively in which the denominator is retained same.

For example :

Add : \mathsf{ \frac{1}{5}  +  \frac{3}{5}  =  \frac{1 + 3}{5} } =  \frac{4}{5}

Subtract : \mathsf{ \frac{5}{7}  -  \frac{4}{7}  =  \frac{5 - 4}{7}  =  \frac{3}{7} }

So, sum of like fractions : \mathsf{ =  \frac{sum \: of \: their \: number}{common \: denominator} }

Difference of like fractions : \mathsf{ \frac{difference \: of \: their \: numerator}{common \: denominator} }

<u>Addition </u><u>and </u><u>subtraction</u><u> </u><u>of </u><u>unlike </u><u>fractions</u>

While performing the addition and subtraction of unlike fractions, you have to express the given fractions into equivalent fractions of common denominator and add or subtract as we do with like fractions. Thus, obtained fractions should be reduced into lowest terms if there are any common on numerator and denominator.

For example:

\mathsf{add \:  \frac{1}{2}  \: and \:  \frac{1}{3} }

L.C.M of 2 and 3 = 6

So, ⇒\mathsf{ \frac{1 \times 3}{2 \times 3}  +  \frac{1 \times 2}{3 \times 2} }

⇒\mathsf{ \frac{3}{6}  +  \frac{2}{6} }

⇒\frac{5}{6}

Multiplication of fractions

To multiply one fraction by another, multiply the numerators for the numerator and multiply the denominators for its denominator and reduce the fraction obtained after multiplication into lowest term.

When any number or fraction is divided by a fraction, we multiply the dividend by reciprocal of the divisor. Let's consider a multiplication of a whole number by a fraction:

\mathsf{4 \times  \frac{3}{2}  =  \frac{4 \times 3}{2}  =  \frac{12}{2}  = 6}

Multiplication for \mathsf{ \frac{6}{5}  \: and \:  \frac{25}{3} } is done by the similar process

\mathsf{ =  \frac{6}{5}  \times  \frac{25}{3}  = 2 \times 5 \times 10}

Hope I helped!

Best regards!

5 0
3 years ago
Marc ordered a rug. He gave a deposit of 30% of the cost and will pay the rest when the rug is delivered. If the deposit was $75
ra1l [238]

Answer: Marc still owes $175

Step-by-step explanation:

Let x represent the cost of the rug.

Marc ordered a rug and gave a deposit of 30% of the cost and will pay the rest when the rug is delivered. This means that the amount of money that he deposited

for the rug is

30/100 × x = 0.3 × x = 0.3x

If the deposit was $75, it means that

0.3x = 75

x = 75/0.3 = 250

The cost of the rug is $250

The amount that Marc still owes would be

250 - 75 = $175

6 0
3 years ago
Round the following numbers and estimate the product 52.84x28
Alona [7]
50x30=1500 (this is an approximated rounded answer)
3 0
3 years ago
225 to 270 I need help please help me
vagabundo [1.1K]
Wheres the picture or the problem????
6 0
3 years ago
Other questions:
  • Can anyone help me answer this
    15·1 answer
  • Which number line shows the solution to the quality -3x -5 &lt;-2
    5·1 answer
  • What are the coordinates of the vertices of A L'M'N'?
    9·2 answers
  • What is the nth term of 12 10 8 6 4 ?
    10·1 answer
  • Select The correct answer.<br> What is the simplified form of 3/7- 5/7?
    5·1 answer
  • A state randomly selects 30 high school and collects data on the average 2 points
    14·1 answer
  • Simplify the fraction completly<br> 64/100
    5·2 answers
  • Over a one week period in the summer, the price of a gallon of gas increased from $2.35 to $2.82. By what percent did the price
    15·1 answer
  • Frazer cycles the first 20 miles at an average speed of 21 mph. The second part is more uphill, and he only manages 13mph. By wh
    9·1 answer
  • Let f(x) = xe−x if x ≥ 0 and f(x) = 0 if x &lt; 0<br> Is f a probability density function?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!