Answer:
<u><em>Real-world examples of line segments are a pencil, a baseball bat, the cord to your cell phone charger, the edge of a table, etc. Think of a real-life quadrilateral, like a chessboard; it is made of four line segments</em></u>
Step-by-step explanation:
Hope this helps:)
Answer:
The volume of the solid is 
Step-by-step explanation:
In this case, the washer method seems to be easier and thus, it is the one I will use.
Since the rotation is around the y-axis we need to change de dependency of our variables to have
. Thus, our functions with
as independent variable are:
For the washer method, we need to find the area function, which is given by:
![A=\pi\cdot [(\rm{outer\ radius)^2 -(\rm{inner\ radius)^2 ]](https://tex.z-dn.net/?f=A%3D%5Cpi%5Ccdot%20%5B%28%5Crm%7Bouter%5C%20radius%29%5E2%20-%28%5Crm%7Binner%5C%20radius%29%5E2%20%5D)
By taking a look at the plot I attached, one can easily see that for a rotation around the y-axis the outer radius is given by the function
and the inner one by
. Thus, the area function is:
![A(y)=\pi\cdot [(\sqrt{y} )^2-(y^2)^2]\\A(y)=\pi\cdot (y-y^4)](https://tex.z-dn.net/?f=A%28y%29%3D%5Cpi%5Ccdot%20%5B%28%5Csqrt%7By%7D%20%29%5E2-%28y%5E2%29%5E2%5D%5C%5CA%28y%29%3D%5Cpi%5Ccdot%20%28y-y%5E4%29)
Now we just need to integrate. The integration limits are easy to find by just solving the equation
, which has two solutions
and
. These are then, our integration limits.

Answer:
the third one should be it
Answer: Last option.
Step-by-step explanation:
The total amount of concrete in the ramp (
) will be the sum of the volume of the rectangular prism (
) and the volume of the triangular prism (
)

The formulas are:

Where "l" is the lenght, "w" is the width and "h" is the height.

Where "l" is the lenght, "b" is the base and "h" is the height.
Substituting, we get:
