Vamos lá.
<span>Pede-se para determinar o parâmetro "m" da equação abaixo, sabendo-se que uma raiz é nula e a outra é positiva: </span>
<span>x² + mx + m² - m - 12 = 0 </span>
<span>Veja que se uma raiz é nula (é igual a zero), então vamos substituir o "x" por "0", na equação acima: </span>
<span>0² + m*0 + m² - m - 12 = 0 </span>
<span>0 + 0 + m² - m - 12 = 0 </span>
<span>m² - m - 12 = 0 ------resolvendo essa equação do 2º grau você encontrará as seguintes raízes: </span>
<span>m' = -3 </span>
<span>m'' = 4 </span>
<span>Dessa forma, vamos substituir "m" por (-3) e por 4 e ver se a equação terá uma raiz nula e outra positiva. Vamos ver? </span>
<span>Substituindo "m" por "-3", ficamos com: </span>
<span>x² - 3x + (-3)² - (-3) - 12 = 0 </span>
<span>x² - 3x + 9 + 3 - 12 = 0 </span>
<span>x² - 3x +12 - 12 = 0 </span>
<span>x² - 3x = 0 <------Veja que as raízes dessa equação são: x' = 0 e x'' = 3 </span>
<span>Veja que para m = -3, a equação se verifica, pois temos uma raiz igual a "0" e a outra positiva (igual a 3). </span>
<span>Agora vamos substituir "m" por 4 na equação original: </span>
<span>x² + 4x + 4² - 4 - 12 = 0 </span>
<span>x² + 4x + 16 - 16 = 0 </span>
<span>x² + 4x = 0 <----- Veja que as raízes dessa equação são: x' = 0 e x'' = -4. </span>
<span>Observe que, para m = 4, a equação NÃO se verifica, pois temos uma raiz igual a "0" e a outra negativa (igual a -4). E no enunciado é informado que uma raiz deverá ser nula e a outra positiva. Como deu uma nula e a outra negativa, então m = 4 não convém. </span>
<span>Logo, o valor de "m" deverá ser: </span>
<span>m = -3 <----Pronto. Essa é a resposta. </span>
Because they're both slant like and they both is like you're going down a hill
Answer:
91.04497992m²
Step-by-step explanation:
hope this helps
Answer:
the corresponding angles are equal in similar figures.
Step-by-step explanation:
When two figures are similar then the corresponding angles of the two figures are equal. the side of the figures are in proportional.
for example, when triangle ABC is similar to triangle DEF
then the corresponding angles are equal
<A=<D
<B=<E
<C=<F
so the corresponding angles are equal in similar figures.
Recall the definition of the cross product:
i x i = j x j = k x k = 0
i x j = k
j x k = i
k x i = j
The cross product is antisymmetric, or anticommutative, meaning that for any vectors u and v, we have u x v = - (v x u).
It's also distributive, so for any vectors u, v, and w, we have (u + v) x w = (u x w) + (v x w).
Taking all of these properties together, we get
b x a = (6i - j + 2k) x (2i + 2j - 5k)
b x a = 12 (i x i) - 2 (j x i) + 4 (k x i)
............. + 12 (i x j) - 2 (j x j) + 4 (k x j)
............. - 30 (i x k) + 5 (j x k) - 10 (k x k)
b x a = 1 (j x k) + 34 (k x i) + 14 (i x j)
b x a = i + 34j + 14k