1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Troyanec [42]
3 years ago
11

The formula for estimating the number, N, of a certain product sold is N = 8800ln(7t + 9), where t is the number of years after

the product is introduced. What is the expected number of sales 2 years after the product is introduced? Round to the nearest whole number.
Mathematics
1 answer:
arsen [322]3 years ago
6 0
To determine or predict the expected number of sales after 2 years, we substitute 2 to the t of the givne equation.
                           N = (8800)xln(7(2) + 9)
                                N = 27,592.34
Thus, it is expected that the number of sales after 2 years is 27,592 units. 
You might be interested in
Can u help me with this
Nesterboy [21]
A graphing calculator is a great help for problems of this nature.
  x ∈ {-5.63, -0.55, 2.59}

4 0
3 years ago
Some types of algae have the potential to cause damage to river ecosystems. Suppose the accompanying data on algae colony densit
Phantasy [73]

Answer:

y=-2.95836 x +234.56159

Step-by-step explanation:

We assume that th data is this one:

x: 50, 55, 50, 79, 44, 37, 70, 45, 49

y: 152, 48, 22, 35, 43, 171, 13, 185, 25

a) Compute the equation of the least-squares regression line. (Round your numerical values to five decimal places.)For this case we need to calculate the slope with the following formula:

m=\frac{S_{xy}}{S_{xx}}

Where:

S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}

S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}

So we can find the sums like this:

\sum_{i=1}^n x_i =50+ 55+ 50+ 79+ 44+ 37+ 70+ 45+ 49=479

\sum_{i=1}^n y_i =152+ 48+ 22+ 35+ 43+ 171+ 13+ 185+ 25=694

\sum_{i=1}^n x^2_i =50^2 + 55^2 + 50^2 + 79^2 + 44^2 + 37^2 + 70^2 + 45^2 + 49^2=26897

\sum_{i=1}^n y^2_i =152^2 + 48^2 + 22^2 + 35^2 + 43^2 + 171^2 + 13^2 + 185^2 + 25^2=93226

\sum_{i=1}^n x_i y_i =50*152+ 55*48+ 50*22+ 79*35+ 44*43+ 37*171+ 70*13+ 45*185+ 49*25=32784

With these we can find the sums:

S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}=26897-\frac{479^2}{9}=1403.556

S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}=32784-\frac{479*694}{9}=-4152.22

And the slope would be:

m=-\frac{-4152.222}{1403.556}=-2.95836

Nowe we can find the means for x and y like this:

\bar x= \frac{\sum x_i}{n}=\frac{479}{9}=53.222

\bar y= \frac{\sum y_i}{n}=\frac{694}{9}=77.111

And we can find the intercept using this:

b=\bar y -m \bar x=77.1111111-(-2.95836*53.22222222)=234.56159

So the line would be given by:

y=-2.95836 x +234.56159

7 0
3 years ago
The area of the triangle formed by x− and y− intercepts of the parabola y=0.5(x−3)(x+k) is equal to 1.5 square units. Find all p
Juliette [100K]

Check the picture below.


based on the equation, if we set y = 0, we'd end up with 0 = 0.5(x-3)(x-k).

and that will give us two x-intercepts, at x = 3 and x = k.

since the triangle is made by the x-intercepts and y-intercepts, then the parabola most likely has another x-intercept on the negative side of the x-axis, as you see in the picture, so chances are "k" is a negative value.

now, notice the picture, those intercepts make a triangle with a base = 3 + k, and height = y, where "y" is on the negative side.

let's find the y-intercept by setting x = 0 now,


\bf y=0.5(x-3)(x+k)\implies y=\cfrac{1}{2}(x-3)(x+k)\implies \stackrel{\textit{setting x = 0}}{y=\cfrac{1}{2}(0-3)(0+k)} \\\\\\ y=\cfrac{1}{2}(-3)(k)\implies \boxed{y=-\cfrac{3k}{2}} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{area of a triangle}}{A=\cfrac{1}{2}bh}~~ \begin{cases} b=3+k\\ h=y\\ \quad -\frac{3k}{2}\\ A=1.5\\ \qquad \frac{3}{2} \end{cases}\implies \cfrac{3}{2}=\cfrac{1}{2}(3+k)\left(-\cfrac{3k}{2} \right)


\bf \cfrac{3}{2}=\cfrac{3+k}{2}\left( -\cfrac{3k}{2} \right)\implies \stackrel{\textit{multiplying by }\stackrel{LCD}{2}}{3=\cfrac{(3+k)(-3k)}{2}}\implies 6=-9k-3k^2 \\\\\\ 6=-3(3k+k^2)\implies \cfrac{6}{-3}=3k+k^2\implies -2=3k+k^2 \\\\\\ 0=k^2+3k+2\implies 0=(k+2)(k+1)\implies k= \begin{cases} -2\\ -1 \end{cases}


now, we can plug those values on A = (1/2)bh,


\bf \stackrel{\textit{using k = -2}}{A=\cfrac{1}{2}(3+k)\left(-\cfrac{3k}{2} \right)}\implies A=\cfrac{1}{2}(3-2)\left(-\cfrac{3(-2)}{2} \right)\implies A=\cfrac{1}{2}(1)(3) \\\\\\ A=\cfrac{3}{2}\implies A=1.5 \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \stackrel{\textit{using k = -1}}{A=\cfrac{1}{2}(3+k)\left(-\cfrac{3k}{2} \right)}\implies A=\cfrac{1}{2}(3-1)\left(-\cfrac{3(-1)}{2} \right) \\\\\\ A=\cfrac{1}{2}(2)\left( \cfrac{3}{2} \right)\implies A=\cfrac{3}{2}\implies A=1.5

7 0
3 years ago
Find the value of x in the rectangle ABCD.
attashe74 [19]

Answer:

52°

Step-by-step explanation:

<em>here's</em><em> </em><em>your</em><em> solution</em>

<em>=</em><em>></em><em> </em><em>we </em><em>know</em><em> </em><em>that</em><em> </em><em>the </em><em>measure</em><em> </em><em>of</em><em> </em><em>angle</em><em> of</em><em> </em><em>rectangle</em><em> </em><em>is </em><em> </em><em>9</em><em>0</em><em>°</em>

<em>=</em><em>></em><em> </em><em> </em><em>3</em><em>8</em><em>°</em><em> </em><em>+</em><em> </em><em>X </em><em> </em><em>=</em><em> </em><em>9</em><em>0</em><em>°</em>

<em>=</em><em>></em><em> </em><em>X </em><em>=</em><em> </em><em>9</em><em>0</em><em>°</em><em> </em><em>-</em><em> </em><em>3</em><em>8</em><em>°</em>

<em>=</em><em>></em><em> </em><em>X </em><em>=</em><em> </em><em>5</em><em>2</em><em>°</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em>hope</em><em> it</em><em> helps</em>

3 0
3 years ago
Read 2 more answers
The triangle shown below has an area of 24 units. 10, 8, x. Find the missing length.
Finger [1]

Answer:

51

Step-by-step explanation:

a squared+2 squred=c

7×7- 10×10= 49-100= 51

c= 51

find square root of it 51= 7.14

8 0
2 years ago
Other questions:
  • Determine the equation of the inverse of y=1/4x^3-2
    9·1 answer
  • Simplify -4 1/6 - -6 1/3 Which of the following is correct?
    8·1 answer
  • What is the number between 145.809 and 144.809?
    10·1 answer
  • Use the following test scores. Find the mean, median score, mode, and spread. Round to the nearest whole number. 100 96 58 95 60
    6·1 answer
  • Solve the equation for x<br> 3x/4+2=x/4+3
    8·1 answer
  • 4.32/3.6=<br> please help soon!!
    12·2 answers
  • A researcher wants to know if eating a mint affects whether people can distinguish between two popular orange juice brands. To c
    9·2 answers
  • Find All Real Square Roots Of 144
    15·1 answer
  • Find the value of x 2-x7=25
    8·1 answer
  • 5 The shape of two neighbors' lawns are similar.
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!