Answer:
x = 6
Step-by-step explanation:
Given that x and y vary directly then the equation relating them is
y = kx ← k is the constant of variation
To find k use the condition x = 25 when y = 100 , then
100 = 25k ( divide both sides by 25 )
4 = k
y = 4x ← equation of variation
When y = 24 , then
24 = 4x ( divide both sides by 4 )
6 = x
Well, we could try adding up odd numbers, and look to see when we reach 400. But I'm hoping to find an easier way.
First of all ... I'm not sure this will help, but let's stop and notice it anyway ...
An odd number of odd numbers (like 1, 3, 5) add up to an odd number, but
an even number of odd numbers (like 1,3,5,7) add up to an even number.
So if the sum is going to be exactly 400, then there will have to be an even
number of items in the set.
Now, let's put down an even number of odd numbers to work with,and see
what we can notice about them:
1, 3, 5, 7, 9, 11, 13, 15 .
Number of items in the set . . . 8
Sum of all the items in the set . . . 64
Hmmm. That's interesting. 64 happens to be the square of 8 .
Do you think that might be all there is to it ?
Let's check it out:
Even-numbered lists of odd numbers:
1, 3 Items = 2, Sum = 4
1, 3, 5, 7 Items = 4, Sum = 16
1, 3, 5, 7, 9, 11 Items = 6, Sum = 36
1, 3, 5, 7, 9, 11, 13, 15 . . Items = 8, Sum = 64 .
Amazing ! The sum is always the square of the number of items in the set !
For a sum of 400 ... which just happens to be the square of 20,
we just need the <em><u>first 20 consecutive odd numbers</u></em>.
I slogged through it on my calculator, and it's true.
I never knew this before. It seems to be something valuable
to keep in my tool-box (and cherish always).
Answer:
A (9, 3)
Step-by-step explanation:
First the point is rotated 90° counterclockwise about the origin. To do that transformation: (x, y) → (-y, x).
So S(-3, -5) becomes S'(5, -3).
Next, the point is translated +4 units in the x direction and +6 units in the y direction.
So S'(5, -3) becomes S"(9, 3).
Answer:
100% all of them
Step-by-step explanation:
he bought (p) oranges so if 1% are bad they are still there, so there are still 100% of the oranges remaining because he hasn't aten any or disposed of any.