Answer:
We have the function:
r = -3 + 4*cos(θ)
And we want to find the value of θ where we have the maximum value of r.
For this, we can see that the cosine function has a positive coeficient, so when the cosine function has a maximum, also does the value of r.
We know that the meaximum value of the cosine is 1, and it happens when:
θ = 2n*pi, for any integer value of n.
Then the answer is θ = 2n*pi, in this point we have:
r = -3 + 4*cos (2n*pi) = -3 + 4 = 1
The maximum value of r is 7
(while you may have a biger, in magnitude, value for r if you select the negative solutions for the cosine, you need to remember that the radius must be always a positive number)
THIS IS THE COMPLETE QUESTION BELOW
The demand equation for a product is p=90000/400+3x where p is the price (in dollars) and x is the number of units (in thousands). Find the average price p on the interval 40 ≤ x ≤ 50.
Answer
$168.27
Step by step Explanation
Given p=90000/400+3x
With the limits of 40 to 50
Then we need the integral in the form below to find the average price
1/(g-d)∫ⁿₐf(x)dx
Where n= 40 and a= 50, then if we substitute p and the limits then we integrate
1/(50-40)∫⁵⁰₄₀(90000/400+3x)
1/10∫⁵⁰₄₀(90000/400+3x)
If we perform some factorization we have
90000/(10)(3)∫3dx/(400+3x)
3000[ln400+3x]₄₀⁵⁰
Then let substitute the upper and lower limits we have
3000[ln400+3(50)]-ln[400+3(40]
30000[ln550-ln520]
3000[6.3099×6.254]
3000[0.056]
=168.27
the average price p on the interval 40 ≤ x ≤ 50 is
=$168.27
You have to use factoring by grouping.. multiply by 8 and 15 and what factors add to -14.
The factors are 6 and -20
(2x-5)(4x+3)
If there are 15 boards there are 14 gaps in-between.
But first, 15 boards each 9 and 1/4th inches so you get a total of 138 inches and 3/4th
If you subtract that from 144 you get 5 inches and 1/4th. The remaining amount is the total of all of the distance from the spacing.
Then you divide that by 14 (number of gaps/spacing in-between.)
So you get .375 inches. (3/8)
So width of the spacing between each board is 3/8ths of a inch