Answer:
![\sqrt{5}\cdot\sqrt[3]{5} =\sqrt[6]{5^3} \cdot\sqrt[6]{5^2} =\sqrt[6]{5^5} =5^{(5/6)}](https://tex.z-dn.net/?f=%5Csqrt%7B5%7D%5Ccdot%5Csqrt%5B3%5D%7B5%7D%20%3D%5Csqrt%5B6%5D%7B5%5E3%7D%20%5Ccdot%5Csqrt%5B6%5D%7B5%5E2%7D%20%3D%5Csqrt%5B6%5D%7B5%5E5%7D%20%3D5%5E%7B%285%2F6%29%7D)
Step-by-step explanation:
The rules of exponents apply, even when they are fractional exponents:
![a^b\cdot a^c=a^{b+c}\\\\\sqrt[b]{x^a}=x^{(a/b)}](https://tex.z-dn.net/?f=a%5Eb%5Ccdot%20a%5Ec%3Da%5E%7Bb%2Bc%7D%5C%5C%5C%5C%5Csqrt%5Bb%5D%7Bx%5Ea%7D%3Dx%5E%7B%28a%2Fb%29%7D)
Answer:
I think it is c correct me if I'm wrong
Answer:
see explanation
Step-by-step explanation:
Under a counterclockwise rotation about the origin of 90°
a point (x, y ) → (- y, x ), thus
P(1, - 1 ) → P'(1, 1 )
Q(3, - 2 ) → Q'(2, 3 )
R(3, - 4 ) → R'(4, 3 )
The x-intercept of a function is the value of x when y is 0. So let's set sin(x) equal to zero. When does sin(x) equal zero? Based on the unit circle, you know that sin(0) is 0, so that is one x-intercept. You also know that sin(pi) is 0. Basically, every time x, starting from zero, increases or decreases by a multiple of pi, sin(x) is still zero. The answer can be represented by x=n*pi; where n=any integer.
<em>The</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>(</em><em>4</em><em>,</em><em>7</em><em>)</em>
<em>look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>helps</em><em>.</em><em>.</em>
<em>Good</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>