Notice that
13 - 9 = 4
17 - 13 = 4
so it's likely that each pair of consecutive terms in the sum differ by 4. This means the last term, 149, is equal to 9 plus some multiple of 4 :
149 = 9 + 4k
140 = 4k
k = 140/4
k = 35
This tells you there are 35 + 1 = 36 terms in the sum (since the first term is 9 plus 0 times 4, and the last term is 9 plus 35 times 4). Among the given options, only the first choice contains the same amount of terms.
Put another way, we have

but if we make the sum start at k = 1, we need to replace every instance of k with k - 1, and accordingly adjust the upper limit in the sum.


3m + 7y + 5 + -1m + -6y = 0
Reorder the terms:5 + 3m + -1m + 7y + -6y = 0
Combine like terms: 3m + -1m = 2m5 + 2m + 7y + -6y = 0
Combine like terms: 7y + -6y = 1y5 + 2m + 1y = 0
Solving5 + 2m + 1y = 0
Solving for variable m'.
Move all terms containing m to the left, all other terms to the right.
Add '-5' to each side of the equation.5 + 2m + -5 + 1y = 0 + -5
Reorder the terms:5 + -5 + 2m + 1y = 0 + -5
Combine like terms: 5 + -5 = 00 + 2m + 1y = 0 + -52m + 1y = 0 + -5
Combine like terms: 0 + -5 = -52m + 1y = -5
Add '-1y' to each side of the equation.2m + 1y + -1y = -5 + -1y
Combine like terms: 1y + -1y = 02m + 0 = -5 + -1y2m = -5 + -1y
Divide each side by '2'.m = -2.5 + -0.5y
Roots m=-2.5 + -0.5y
Simplify the following:3 m + 7 y + 5 - m - 6 y
Grouping like terms, 3 m + 7 y + 5 - m - 6 y = (7 y - 6 y) + (3 m - m) + 5:(7 y - 6 y) + (3 m - m) + 5
7 y - 6 y = y:y + (3 m - m) + 5
3 m - m = 2 m:Answer: y + 2 m + 5
Not sure what you need so I gave you Simplification and Roots.
1 millimetre = 1/1000 = 1×10^-3 m
Answer:
6.7
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
<u>Trigonometry</u>
- [Right Triangles Only] Pythagorean Theorem: a² + b² = c²
Step-by-step explanation:
<u>Step 1: Identify Variables</u>
Leg <em>a</em> = <em>x</em>
Leg <em>b</em> = 2
Hypotenuse <em>c</em> = 7
<u>Step 2: Solve for </u><em><u>x</u></em>
- Substitute [PT]: x² + 2² = 7²
- Isolate <em>x </em>term: x² = 7² - 2²
- Exponents: x² = 49 - 4
- Subtract: x² = 45
- Isolate <em>x</em>: x = 3√5
- Evaluate: x = 6.7082
- Round: x ≈ 6.7